Supplementary Analysis

“Single-cell reconstruction of developmental
trajectories during zebrafish embryogenesis”

Jeffrey A. Farrell’, Yiqun Wang’, Samantha J. Riesenfeld, Karthik Shekhar,
Aviv Regevt, Alexander F. Schiert

Science 26 Apr 2018. doi: 10.1126/science.aar3131

This is the author’s version of the work. It is posted here by permission of the AAAS for
personal use, not for redistribution.

URD 1: Creating URD Object and Finding Variable

Genes

library (URD)
library(gridExtra) # grid.arrange function

Load filtered data

We load zf.dropseq.counts, which is a genes X cells data.frame of unnormalized, unlogged transcripts detected
per gene per cell. We also load zf.dropseq.meta, which is a cells X metadata data.frame of metadata about each
cell (e.g. number of genes detected, number of cells detected, sequencing batch, developmental stage, and so
on.).

zf .dropseq.counts <- readRDS(file = "data/zf.dropseq.counts.rds")

zf .dropseq.meta <- readRDS(file = "data/zf.dropseq.meta.rds")

Create an URD object

Create URD object
object <- createURD(count.data = zf.dropseq.counts, meta = zf.dropseq.meta, min.cells = 20,
min.counts = 20, gene.max.cut = 5000)

2018-02-08 20:02:37: Filtering cells by number of genes.

2018-02-08 20:03:44: Filtering genes by number of cells.

2018-02-08 20:05:08: Filtering genes by number of counts across entire data.
2018-02-08 20:06:38: Filtering genes by maximum observed expression.

2018-02-08 20:08:06: Creating URD object.

2018-02-08 20:08:10: Determining normalization factors.

2018-02-08 20:08:49: Normalizing and log-transforming the data.

2018-02-08 20:10:22: Finishing setup of the URD object.

2018-02-08 20:11:00: All done.

Delete the original data
rm(list = c("zf.dropseq.counts", "zf.dropseq.meta"))

Perform garbage collection to free RAM.
shhhh <- gc()

Find variable genes

Because scRNA-seq data is noisy, gene expression exhibits high variability due to technical effects, and the
amount of technical variability is linked to mean expression level in scRNA-seq data. To identify genes that
are likely to encode biologically relevant information, we look for those that exhibit more variability than
other similarly expressed genes. We use only those highly variable genes for calculating distance between
cells in gene expression space, for calculating the diffusion map, for building the tree, and we also privilege
them during differential expression with lower thresholds (as they are more likely to be interesting cell-type
specific markers).

As the genes that encode biological information may change over developmental time, we calculate variable
genes separately for each stage, and then take the union of them.
Find a list of cells from each stage.
stages <- unique(object@meta$STAGE)
cells.each.stage <- lapply(stages, function(stage) rownames(object@meta) [which(object@meta$STAGE ==
stage)])

Compute variable genes for each stage.

var.genes.by.stage <- lapply(l:length(stages), function(n) findVariableGenes(object,
cells.fit = cells.each.stage[[n]], set.object.var.genes = F, diffCV.cutoff = 0.3,
mean.min = 0.005, mean.max = 100, main.use = stages[[n]], do.plot = T))

Density

Density

Density

Size Factors & Gamma Fit (a=2.16

Q - -~ .
© | |
o n §
>
© o ®
. — n c
=7 g
< | g
S s
8
N o
o ~—
o
> = o
e o T T 1
0 1 2 3
UMIs per cell / mean UMlIs per cell
Size Factors & Gamma Fit (a=1.74
o
o
wn
~N
>
o
[~
(] o
=] o
o o}
Q -—
'
o
o
wn
o
UMIs per cell / mean UMlIs per cell
Size Factors & Gamma Fit (a=4.28
8
o _ =]
-~ wn
Lo —
o
o g g
S 7 T, g 8
o i 8-
- H|||F Lt
I o
: | :
- it
> o
e | R —

05 10 15 20 25 3.0

UMIs per cell / mean UMlIs per cell

ZFHIGH

Diff CV Selection of Variable Genes
7])
c
3
o
. k2
>
)

- [| | I 1 L L LI L I
00 05 10 15 20 5e-03 1e-01 5e+00
log(CVgene / CVnull) Mean Counts

ZFOBLONG
Diff CV Selection of Variable Genes
|
] |
|
. |
!)
] | 2
| 3
[=}
= |)
| >
_ | O
|
. |
|
- T \
| I | | LI LI LI LI |
00 05 10 15 5e-03 1e-01 5e+00
log(CVgene / CVnull) Mean Counts
ZFDOME
Diff CV Selection of Variable Genes
|
_ | o
! &
— I
!)
| IS
1l 3 o
| X
1 5 2
_ |
|
— T 1 T T T T T
0.0 0.5 1.0 1.5 1e-03 1e-01 1e+01

log(CVgene / CVnull) Mean Counts

Density

Density

Density

Size Factors & Gamma Fit (a=3.5)

0.8

0.6

04

UMIs per cell / mean UMlIs per cell

ol -I
e
||"im

25

0.0

0.5 1.5

Size Factors & Gamma Fit (a=3.55

I

04

0.2

UMIs per cell / mean UMlIs per cell

Size Factors & Gamma Fit (a=4.52

"

0.5

N
-

0.4

1.0 15 20 25 3.0

UMIs per cell / mean UMlIs per cell

Frequency

Frequency

Frequency

2000 4000 6000

0

3000

1000

0

2000 4000 6000

0

ZF30

Diff CV

L

00 05 10 15

log(CVgene / CVnull)

ZF50

Diff CV

|
|
|
|
|
|
|
|
|
|
|
I
|
I

2.0

[| | I |
0.0 0.5

log(CVgene / CVnull)

ZFS

Diff CV

&

1.0 1.5 20 25

T
! | | ! |

00 05 10 15 20

log(CVgene / CVnull)

CV (counts)

CV (counts)

CV (counts)

Selection of Variable Genes

20.0

5.0

2.0

0.5

1e-03 1e-01 1e+01

Mean Counts

Selection of Variable Genes

20.0

20 50

0.5

T T T
1e-03 1e-01 1e+01

Mean Counts

Selection of Variable Genes

5.0 20.0

20

0.5

1e-03 1e-01 1e+01

Mean Counts

Density

Density

Density

Size Factors & Gamma Fit (a=3.38

il
F

k
\

1.0

04 06 08

0.2

0.0

UMIs per cell / mean UMlIs per cell

Size Factors & Gamma Fit (a=3.3)

¥
L

0.5

1.0

00 02 04 06 08

UMIs per cell / mean UMlIs per cell

Size Factors & Gamma Fit (a=3.22

1.0

0.0 02 04 06 0.8

T T T T 11
0.5 1.5 25 3.5

UMIs per cell / mean UMlIs per cell

Frequency

Frequency

Frequency

3000

1000

0

3000

1000

0

3000

1000

0

ZF60

Diff CV Selection of Variable Genes
] o
=1
—_ oN
n 1)
c
3
8 o
] K
>
O o
_ N
- ©
| I | | I | o I I I
0.0 05 1.0 15 20 25 1e-03 1e-01 1e+01
log(CVgene / CVnull) Mean Counts
ZF75
Diff CV Selection of Variable Genes
o
g o
- |72} o
IS
3
_ 8 o
> wn
O o
] o
- 0
| | | | | | =
0.0 05 10 15 20 25 1e-04 1e-02 1e+00 1e+02
log(CVgene / CVnull) Mean Counts
ZF90
Diff CV Selection of Variable Genes
1)
c
3
. 3
>
&)

T T T
1e-03 1e-01 1e+01

T T T T 1
05 10 15 20 25

log(CVgene / CVnull) Mean Counts

ZFB

UMIs per cell / mean UMlIs per cell log(CVgene / CVnull)

names (var.genes.by.stage) <- stages

Take union of variable genes from all stages
var.genes <- sort(unique(unlist(var.genes.by.stage)))

Size Factors & Gamma Fit (a=2.88 Diff CV
o
_ o
o
o _ | <
- H o
o | |l S
» g 7
= c o
g ST -
o < g
c] L o
o
o e
A
o
> o -
e r T T 1 T T T T T 1
1 2 3 4 00 05 10 15 20 25
UMIs per cell / mean UMIs per cell log(CVgene / CVnull)
ZF3S
Size Factors & Gamma Fit (a=3.61 Diff CV
e 4 o
- o
o
© wn
o 7| -
)
£ 24 § 8
[=] o
[o @
o ¥ 1<
o 5 ' -
N
" Tl -
In: -
o |
> U1 e, o
e | R . . E— — T T T T T 1
0.5 1.5 25 00 05 10 15 20 25
UMIs per cell / mean UMlIs per cell log(CVgene / CVnull)
ZF6S
Size Factors & Gamma Fit (a=3.65 Diff CV
N
) H'. .8
z 31 “ ‘ g
z ° g
8 E -
<t [T
gl .
o _| '”|||||”Iilinua!;.;‘. alleem o -
e | I I B . E—— T T T T T 1
0.5 1.5 25 3.5 00 05 10 15 20 25

CV (counts)

CV (counts)

CV (counts)

Selection of Variable Genes

1e-04 1e-02 1e+00 1e+02

Mean Counts

Selection of Variable Genes

<
o
o~
o

T}

o

o~

w

o T T T T T

1e-03 1e-01 1e+01
Mean Counts
Selection of Variable Genes

o

o

N

o

w0

<

o~

o}

o

1e-03 1e-01 1e+01
Mean Counts

Set variable genes in object
object@var.genes <- var.genes

Save wvariable gene lists
for (stage in stages) {

write(var.genes.by.stage[[stagel]l, file = pasteO("var_genes/var_", stage, ".txt"))
}

write(var.genes, file = "var_genes/var_genes.txt")

Perform PCA and calculate a tSNE projection

These steps are not strictly necessary for building a tree using URD, but they are a common visualization
and can be useful for inspecting the data. The PCA is also required for graph-based clustering which we use
below to remove some populations that would confound the discovery of developmental trajectories.

object <- calcPCA(object)

[1] "2018-02-08 20:12:34: Centering and scaling data."

[1] "2018-02-08 20:12:57: Removing genes with no variation."

[1] "2018-02-08 20:13:05: Calculating PCA."

[1] "2018-02-08 20:21:10: Estimating significant PCs."

[1] "Marchenko-Pastur eigenvalue null upper bound: 1.48442498751452"
[1] "97 PCs have larger eigenvalues."

[1] "Storing 194 PCs."

set.seed(18)
object <- calcTsne(object, perplexity = 30, theta = 0.5)

set.seed(17)

object <- graphClustering(object, dim.use = "pca", num.nn = c(15, 20, 30), do.jaccard = T,
method = "Louvain")

Need to make a mew version of stage names that is alphabetical.

object@meta$stage.nice <- plyr::mapvalues(x = object@meta$STAGE, from = c("ZFHIGH",
"ZFOBLONG", "ZFDOME", "ZF30", "ZF50", "ZFS", "ZFeO", "ZF75", "ZF9O", "ZFB", "ZF3S",
"ZF6S"), to = c("A-HIGH", "B-OBLONG", "C-DOME", "D-30", "E-50", "F-S", "G-60",
"H-75", "I-90", "J-B", "K-3S", "L-6S"))

stage.colors <- c("#CCCCCC", RColorBrewer::brewer.pal(9, "Seti1")[9], RColorBrewer: :brewer.pal(12,
"Paired") [c(9, 10, 7, 8, 5, 6, 3, 4, 1, 2)1)

plotDim(object, "stage.nice", discrete.colors = stage.colors, legend = T, plot.title = "Developmental Stage",
alpha = 0.5)

Developmental Stage

40
A-HIGH
20+ B-OBLONG
C-DOME
D-30
E-50
W o-
= F-S
= G-60
H-75
1-90
-20 1
J-B
K-3S
L-6S
-40 -
-40 -20 0 20 40
tSNE1
plotDim(object, "Louvain-15", legend = T, plot.title = "Louvain-Jaccard Graph-based Clustering (15 NNs)",
alpha = 1)

Louvain-Jaccard Graph-based Clustering (15 NNs)

10 -« 29
404
S11 -3
- 12 - 30
- 13 - 31
20+ « 14 - 32
- 15 - 33
- 16 - 34
- 17 - 35
W o-
% + 18 -+ 36
- + 19 - 37
-2 - 38
+ 20 - 39
-20 A
<21 ¢« 4
+ 22 - 40
+ 23 - 5
-40 4 © 24 - 6
T T T T T - 25 « 7
-40 -20 0 20 40
tSNE1 © 26 - 8

Remove outliers

Identify cells that are poorly connected

Since the diffusion map is calculated on a k-nearest neighbor graph in gene expression space, cells that are
unusually far from their nearest neighbors in a k-nearest neighbor graph often result in poor diffusion maps
because many of the highly ranked diffusion components will primarily represent variability of individual
outlier cells. Thus, cropping cells based on their distance to their nearest neighbor, and cropping cells that
have unusually large distances to an nth nearest neighbor (given the distance to their nearest neighbor)
generally produces better, more connected diffusion maps.

Calculate a k-nearest neighbor graph
object <- calcKNN(object, nn = 100)

We cropped cells to the right of the green line (those that are unusually far from their nearest neighbor) and
cells above the blue or red lines (those that are unusually far from their 20th nearest neighbor, given their
distance to their 1st nearest neighbor).

Plot cells according to their distance to their nearest and 20th nearest

neighbors, and identify those with unusually large distances.

outliers <- knnQutliers(object, nn.1 = 1, nn.2 = 20, x.max = 40, slope.r = 1.1, int.r = 2.9,
slope.b = 0.85, int.b = 10, title = "Identifying Outliers by k-NN Distance.")

Identifying Outliers by k-NN Distance.

Distance to neighbor 20

20 30 40 50
Distance to neighbor 1

Identify apoptotic-like cells

A group of cells had very strong expression for the ‘apoptotic-like’ program that was identified in our prior
work (Satija and Farrell, Gennert, Schier and Regev; Nature Biotechnology 2015). These cells seem to arise
from many different cell types, and express both a cell-type specific program, as well as the ‘apoptotic-like’
program. We removed them from further analysis, because we reasoned that their shared state would create
‘short-circuits’ in the developmental trajectories; cells from already-distinct cell types could be connected
in gene expression space through their common expression of this strong cell-type-independent program.
These cells primarily occupied a single cluster in Louvain-Jaccard clustering on the entire data set (identified
through expression of this cell state’s markers isgl5, foxo3b, and gadd45aa). Cells in this cluster were
removed from further analysis.
gridExtra::grid.arrange(grobs=1ist(

Plot some apoptotic-like markers

plotDim(object, "ISG15", alpha=0.4, point.size=0.5),

plotDim(object, "FOX03B", alpha=0.4, point.size=0.5),

plotDim(object, "GADD45AA", alpha=0.4, point.size=0.5),

Figure out which cluster corresponds to these cells

plotDimHighlight (object, clustering="Louvain-15", cluster="24", legend=F)
)

ISG15 FOXO03B

40 1 40 1

20+ 20
5
o 4N
z 9 3 =z
7 7
- 2 -
1
-20- o .20
401 401
40 -20 0 20 40 40 -20 0 20 40
tSNE1 tSNE1
GADDA45AA Louvain-15 (Highlight 24)
40
20
5
N 4 N
S 0 ;3 4
2 , &
}
.20 o
40
40 -20 0 20 40 40 -20 0 20 40
tSNE1 tSNE1

apoptotic.like.cells <- cellsInCluster(object, "Louvain-15", "24")
Subset object to eliminate outliers

cells.keep <- setdiff(colnames(object@logupx.data), c(outliers, apoptotic.like.cells))
object <- urdSubset(object, cells.keep = cells.keep)

Save object

saveRDS(object, file = "obj/object_2_trimmed.rds")

10

URD 2: Diffusion Map and Pseudotime

library (URD)

Load previous saved object

object <- readRDS("obj/object_2_trimmed.rds")

Calculate diffusion map

First, from the data, we have to calculate the transition probalities between cells. The eigendecomposition
of the transition probabilities gives diffusion components (which comprise a diffusion map). Inspecting the
diffusion map is an easy way to verify that good parameters have been chosen for the transition probabilities.
For this, we use the pioneering package destiny from the Theis lab that established the usefulness of diffusion
maps for studying differentiation processes in single-cell RNAseq data.

Run on the cluster

For smaller data sets (e.g. 10,000 cells), the diffusion map can easily be calculated on your laptop or desktop
computer. For larger data sets, such as the one here (~40,000 cells), it can be RAM intensive, so diffusion
maps were calculated on the cluster using the scripts URD-DM.R and URD-DM.sh. The commands included
in URD-DM.R were:

Calculate diffusion map
object <- calcDM(object, knn = 200, sigma.use = 8)

Save diffusion map to read in later.
saveRDS (object@dm, file = "dm/dm-8-2.0.6ep.rds")

Load diffusion map and add to URD object

Load calculated diffusion map
dm.8 <- readRDS("dm/dm-8-2.0.6ep.rds")

Add it to the URD object
object <- importDM(object, dm.8)

Inspect diffusion map

Stage color palette
stage.colors <- c("#CCCCCC", RColorBrewer::brewer.pal(9, "Set1")[9], RColorBrewer::brewer.pal(12,
"Paired") [c(9, 10, 7, 8, 5, 6, 3, 4, 1, 2)]1)

plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18, label = "stage.nice",
plot.title = "", outer.title = "STAGE - Diffusion Map Sigma 8", legend = F, alpha = 0.3,
discrete.colors = stage.colors)

DC2

DC8

DC14

-
0.000 g
-0.025
-0.0509 !
-0.075 4
-0.100

00 02 04 06

DCA1

-0.10

-0.05

DC7

0.00

0.104

0.05 1

0.00 4

-0.05 1

-0.10 1

-0.04

0.00
DC13

0.04

DC4

DC16

STAGE - Diffusion Map Sigma 8

0.05 1

0.00+

0.00 0.05 0.10 0.15 0.20

DC3

-0.075

-0.0560.0

25).0000.0250.0500.07€

DC9

0.10 A

0.05 1

0.00

-0.05 1

-0.1

0.0
DC15

0.1

0.2

DC6

DC12

DC18

0.0 1

-0.51

-1.0-

-1.5 1

-2.0 1

0025 0000 0.025 0.050
DC5

0.04 1

0.00 4

-0.04

-0.08 1

-0.025 0.000 0.025 0.050
DC11

0.03 4

0.00

-0.03 1

-0.06 -

0.00 005

DC17

-0.05

We have had good results tuning sigma such that 1 or 2 pairs of DCs become very tight, while the remainder
exhibit sharp spikes for several more DCs before beginning to become blurry. For this data, sigma 8 exhibits
that desired behavior. (Additional diffusion maps with varied sigma values are presented in “URD: Choosing

Parameters - Diffusion Map Sigma.”)

Pseudotime

We next assign cells a pseudotime, that represents an ordering in the process of differentiation. We find that
cells from neighboring developmental stages can exhibit extremely similar transcriptomes, so we prefer this
to analyzing the data according to its developmental stage. Pseudotime is used later for biasing random
walks used to determine developmental trajectories, as well as for determining where branchpoints lie in the
data.

Calculate pseudotime “floods”

Because this computation can take some time and RAM, this portion was also run on the cluster, using the
script URD-PT.R and URD-PT.sh. Since many simulations are run, this allows the work to be split across
several CPUs. For smaller datasets (<10,000 cells), this can be efficiently run on a laptop. The commands
run in URD-PT.R were:

We first define the ‘root’ or the base of the specification tree as a group of cells (here, all cells from the
first developmental stage we profiled). We then simulate ‘floods’, which start with the root cells visited, and
move to connected cells in a stepwise fashion (with the chance of visiting a neighboring cell determined by
the transition probabilities). This continues until the visitation structure of the graph stops changing much
in a given iteration.

Define the root cells as cells in HIGH stage
root.cells <- rownames(object@meta) [objectO@meta$STAGE == "ZFHIGH"]

Do the flood
flood.result <- floodPseudotime(object, root.cells = root.cells, n = 10, minimum.cells.flooded = 2,
verbose = T)

Save the result
saveRDS(flood.result, file = "floods/flood-dm-8-[random#].rds")

Process pseudotime floods

We loaded the pre-run floods from the cluster (where 150 total simulations were performed).

Load floods
floods.dm8 <- lapply(list.files(path = "floods/", pattern = "flood-dm-8-", full.names = T),
readRDS)

We then processed the simulations. Each cell was assigned pseudotime determined as the average across all
simulations of the step that visited the cell (normalized to the number of steps in a given simulation).
Process the floods

object <- floodPseudotimeProcess(object, floods.dm8, floods.name = "pseudotime",
max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 20)

Pseudotime was calculated with several sub-sampled portions of the simulations, and the overall change in
pseudotime across all cells was determined as more data was added. Since this graph reaches an asymptote,
enough simulations were performed.

pseudotimePlotStabilityOverall (object)

Overall Pseudotime Stability

500 -

w -
o o
o o
[1

Total change in pseudotime
N
8

100 -

40 80
Simulations

Inspect pseudotime

The detected pseudotime looked like this, shown on the tSNE.
plotDim(object, "pseudotime", plot.title = "Pseudotime")

120

Pseudotime

401
20+
N
I 0-
Z
)
-—
-20-
401
-40 -20 0 20 40
tSNE1

And we the plotted the distribution of pseudotime for cells from each developmental stage. As expected, there
is a clear correlation between pseudotime and actual developmental stage, but the distributions of pseudotime
overlap for neighboring stages, which is in accord with our expectations of developmental asynchrony. All
cells from 3.3 HPF - ZFHIGH have pseudotime 0 (because they were defined as the root), which creates an
odd shape in this density plot.

Define a properly ordered stage name.

object@meta$HPFSTAGE <- apply(object@metal, c("HPF", "STAGE")], 1, pasteO, collapse = "-",
sep = nu)

Create a data.frame that includes pseudotime and stage information
gg.data <- cbind(object@pseudotime, object@metal[rownames(object@pseudotime), 1)

Plot

gegplot(gg.data, aes(x = pseudotime, color = HPFSTAGE, fill = HPFSTAGE)) + geom_density(alpha = 0.4) +
theme_bw ()

Warning: Removed 19 rows containing non-finite values (stat_density).

HPFSTAGE
3.3-ZFHIGH

3.8-ZFOBLONG
4.3-ZFDOME
4.7-ZF30
5.3-ZF50
6.0-ZFS
7.0-ZF60
8.0-ZF75
9.0-ZF90
10.0-ZFB
11.0-ZF3S
12.0-ZF6S

10 1

density

0.0 0.2 0.4 0.6
pseudotime

Save object

saveRDS(object, file = "obj/object_3_withDMandPT.rds")

URD 3: Determining Tips

library (URD)
library(scran) # Batch correction using MNN
library(gridExtra) # grid.arrange

Load previous saved object

object <- readRDS("obj/object_3_withDMandPT.rds")

Trim to cells from final stage

URD requires users to define the ‘tips’ of the developmental tree (i.e. the terminal populations). To do this,
we clustered the data from the final stage of our timecourse, and decided which clusters to use as tips.

The first step is to trim the data to the cells from the final stage.
Subset the object

cells.B6s <- grep("ZF6S", colnames(object@logupx.data), value = T)
object.6s <- urdSubset(object, cells.keep = cells.6s)

Perform PCA / tSNE on final stage cells

Then, we loaded the variable genes specific to this stage from our earlier calculations (see Part 1), and
performed PCA, graph-based clustering, and tSNE (to easily visualize the clustering).

Load the wvariable genes specific to this stage

var.genes.6s <- scan("var_genes/var_ZF6S.txt", what = "character")

object.6sQvar.genes <- var.genes.6s

Calculate PCA
object.6s <- calcPCA(object.6s)

Warning in as.POSIX1t.POSIXct(x, tz): unknown timezone 'zone/tz/2017c.1.0/
zoneinfo/America/New_York'

[1] "2018-02-09 03:00:34: Centering and scaling data."

[1] "2018-02-09 03:00:35: Removing genes with no variation."

[1] "2018-02-09 03:00:36: Calculating PCA."

[1] "2018-02-09 03:00:49: Estimating significant PCs."

[1] "Marchenko-Pastur eigenvalue null upper bound: 2.11430880049087"

[1] "45 PCs have larger eigenvalues."

[1] "Storing 90 PCs."

Calculate tSNE

set.seed(18)

object.6s <- calcTsne(object.6s, dim.use = "pca", perplexity = 30, theta = 0.5)

We noticed that, in this context, there was a noticeable batch effect between our two samples, and it
sometimes drove cluster boundaries in the data, which was not desired.

Look at batch information
plotDim(object.6s, "BATCH", plot.title = "BATCH (Uncorrected)")

BATCH (Uncorrected)

201 S et nioan' /
: * .:- . ., { . ‘. "’.
. -".:"‘?‘-;; A\ " “.E";"""'"?'.‘ il e T .:‘;\
o7k S s TN LRV
AL AR RO
g "ék ; A i R - DS5
% o ST ‘i‘, ’ .:%k . .‘&é'\”v st.'." h
- .,.'a:.'.‘% Ne, N &. Y '.‘('. - E& :.& - DS5b
‘ W . N T o 7 o
n’.g.—.g' ‘..: . : % .-. &
-20 1 .'!\' Py '.“.&; oo Ay, . O™

- T s

7

o

40 - S
-2'5 6 2l5 50

Batch correct data

Therefore, we batch-corrected the data. We used MNN (https://doi.org/10.1101/165118), a single-cell aware
batch correction algorithm that finds mutually nearest neighbors between batches, and uses them to calculate
correction vectors.

Make a copy of the object

object.6s.mnn <- object.6s

Generate expression matrices from each batch

cells.1 <- rownames(object.6s.mnn@meta) [which(object.6s.mnn@meta$BATCH == "DS5")]
cells.2 <- rownames(object.6s.mnn@meta) [which(object.6s.mnn@meta$BATCH == "DS5b")]
exp.1 <- as.matrix(object.6s.mnn@logupx.datal, cells.1])

exp.2 <- as.matrix(object.6s.mnn@logupx.datal, cells.2])

Batch correct using MNN, correcting all genes, but using the variable genes to

determine mutual nearest neighbors.

logupx.6s.mnn <- mnnCorrect(exp.l, exp.2, subset.row = object.6s.mnn@var.genes, k = 20,
sigma = 1, svd.dim = 0, cos.norm.in = T, cos.norm.out = F)

Combine the resultant corrected matrices and return to original order of cells
logupx.6s.mnn <- do.call("cbind", logupx.6s.mnn[[1]])
logupx.6s.mnn <- logupx.6s.mnn[, colnames(object.6s.mnn@logupx.data)]

Re-sparsify the matriz, by turning anything less than O or near O back to 0.
logupx.6s.mnn[logupx.6s.mnn < 0.05] <- 0
object.6s.mnn@logupx.data <- as(logupx.6s.mnn, "dgCMatrix')

Re-calculate PCA
object.6s.mnn <- calcPCA(object.6s.mnn)

[1] "2018-02-09 03:03:57: Centering and scaling data."
[1] "2018-02-09 03:03:59: Removing genes with no variation."
[1] "2018-02-09 03:03:59: Calculating PCA."

https://doi.org/10.1101/165118

[1] "2018-02-09 03:04:12: Estimating significant PCs."

[1] "Marchenko-Pastur eigenvalue null upper bound: 2.11430880049087"

[1] "45 PCs have larger eigenvalues."

[1] "Storing 90 PCs."

Re-calculate tSNE

set.seed(18)

object.6s.mnn <- calcTsne(object.6s.mnn, dim.use = "pca", perplexity = 30, theta = 0.5)

We found that this ameliorated the batch effect in the data.
Look at batch information
plotDim(object.6s.mnn, "BATCH", plot.title = "BATCH (MNN Corrected)")

BATCH (MNN Corrected)

20+

¥ 2t . R o2
g S e - . "’Ql;?' .;\.:éf.'.‘:q . L - DS5

L
2! 2 * L K % ‘.3
N oo 8. . 3 .
R T . yvoo "%, ~ O - DS5b

-20 - ; ‘g _'3% - -..‘.

tSNE2

-40 4

25 0 25
tSNE1

Cluster cells from final stage

Do graph-based clustering

Do graph clustering with Louvain-Jaccard
object.6s.mnn <- graphClustering(object.6s.mnn, num.nn
do.jaccard = T)

c(5, 8, 10, 15), method = "Louvain",

Do graph clustering with Infomap-Jaccard
object.6s.mnn <- graphClustering(object.6s.mnn, num.nn = c(10, 15, 20, 30, 40), method = "Infomap",
do.jaccard = T)

Plot individual clusterings
Many of these parameter choices seems fairly valid. Infomap-20 and Infomap-30 clusterings have a resolution

that seems reasonable, given our expectations for the number of cell populations present in this stage, and
seem to draw boundaries that agree with the most dramatic boundaries in the tSNE plot.

clusterings <- c(pasteO("Louvain-", c(5, 8, 10, 15)), pasteO("Infomap-", c(10, 15,
20, 30, 40)))

for (c in clusterings) {
plot(plotDim(object.6s.mnn, ¢, legend = F))

Louvain-5

20 1

tSNE2

-201

-40 1

o

-25 25

tSNE1
Louvain-8

204

tSNE2

-20 4

.40 4

o4

25 25

tSNE1

Louvain-10

25

20 1

¢aNS}

-20 4

40 4

tSNE1
tSNE1

-25

15

Louvain-

204
0
-20 1
-40 4

¢aNS}

tSNE2

tSNE2

Infomap-10

20 1

-204

-40

-25 0 25
tSNE1

Infomap-15

20

-20 1

40 4

25 0 25
tSNE1

tSNE2

tSNE2

Infomap-20

20 1

-204

-40

25 0 25
tSNE1

Infomap-30

20

-20 1

40 4

25 0 25
tSNE1

Infomap-40

204
0- .
o N .
% : "r—"l':' . ®
- "’k‘. P .
2 2
-t
220 4
-
-40 4
-25 0 25

tSNE1

Markers of each cluster

We calculated the top markers of each cluster in the data, and assigned cluster identities based on the known
expression patterns of some of these top markers.
clusters <- unique(object.6s.mnn@group.ids$ Infomap-30~)

Precision-recall markers to find the best 'markers' of each cluster.

pr.markers <- lapply(clusters, function(c) markersAUCPR(object.6s.mnn, clust.l = c,
clustering = "Infomap-30", genes.use = object.6s.mnn@var.genes))

names (pr.markers) <- clusters

Assign clusters

A totally independent clustering could be attempted here, but since there is so much prior knowledge in
zebrafish, we use it to evaluate and annotate our clustering.

First, we created data.frames to keep track of our cluster assignments.

Make a set of data.frames to keep track during cluster assignment.
I30.n <- length(unique(object.6s.mnn@group.ids$ Infomap-307))
I30.cluster.assignments <- data.frame(cluster = 1:I30.n, name = rep(NA, I30.n), tip = rep(NA,

I30.n), row.names

1:130.n)

I20.n <- length(unique(object.6s.mnn@group.ids$ Infomap-207))
I20.cluster.assignments <- data.frame(cluster = 1:120.n, name = rep(NA, I20.n), tip = rep(NA,

I120.n), row.names

Endoderm

1:120.n)

Markers of cluster 21 and 33 include the endoderm markers PRDX5, FOXA1, and FOXA2. 21 expresses
pharyngeal endoderm markers NKX2.7 and IRX7, while 33 expresses the posterior marker CDX4, marking
it as the pancreatic and interstinal endoderm.

plotDot(object.6s.mnn, genes =
clustering = "Infomap-30")

c("PRDX5", "FOXA1", "FOXA2", "NKX2.7", "IRX7", "CDX4"),

coxt- @ OoQ@o@e@cceccoc@e Qo0 @@ 090000000000 0000 ®eheo PropExp

@® 025
@ o050
IRX7- ® ° . e O o0 L) o0 o . e o o9 - 000 Ve
Qo
@ 0
NKX2.7- @ o e O [] . ®o ([]
()
g
[0} Mean
FOXA2- ® o [} [o [U Is
4
FOXAT - (] [) ° o o 3

2
1
PROX5-0 0 000000000000 000000000000 0000000000000000 0000 o000
11011121314 1516 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 4142 43 44 4546 47 48 49 5 505152535455 6 7 8 9
Cluster

I30.cluster.assignments["21", "name"] <- "Endoderm Pharyngeal"
I30.cluster.assignments["33", "name"] <- "Endoderm Pancreatic/Intestinal"

Axial mesoderm

Cluster 38 is the prechordal plate, based on its expression of hatching enzymes (HE1A, HE1B, and
CTSLB/HGG1). Clusters 37 and 41 are the notochord, based on their expression of the collagens
(COL2A1A, COL8A1A), collagen synthesis related enzymes (P4HA1B), and classic notochord genes
(TA/NTL, NOTO/FLH, and NTD5).

plotDot(objeCt.Gs.mnn, genes = c("CTSLB", "HE1A", "HE1B", "P4HA1B", "COL2A1A", "COLS8A1A",
"TA", "NOTO", "NTD5"), clustering = "Infomap-30")

NTD5- @ o (X X o o oo 0 ¢ T i Prop.Exp
NOTO - @ o0 o o oo o Y) o o . ° ® 025
@ 050
TA- ° ® o o 00 (X)) o o ° @
COLBA1A - . . ° ° e o) @ o
Q
c
- °
§ coLam LX) L] ° T T Mean
Firkio- 9GO0 00000 000000000000000000000.00001,0000000000000000000 I
HE1B - . () . . . 'Y) .
HE1A- e oo . s ° e o e O . oo o e eo@ lz
CTSLB- o e ® e o0 ° ° . o0 .] L] ..o- [] e e . . LN

110 1112 13 14 15 16 17 18 19 2 20 2122 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 4142 43 44 45 46 47 48 49 5 50 5152535455 6 7 & 9
Cluster
38 is Prechordal plate due to expression of hatching enzymes HE1B, HE1A, CTSLB
(hggl)
I30.cluster.assignments["38", "name"] <- "Prechordal Plate"

38 and 41 are the notochord (NOTO, NID5) 41 seems like the real tip, because

its strongest markers are the differentiation genes (P4HA1B, COL8A1A, COL9A3,

PLOD1A, COL2A14) -- all involved in collagen synthesis
I30.cluster.assignments["37", "name"] <- "Notochord Posterior" # Don't use as tip
I30.cluster.assignments["41", "name"] <- "Notochord Anterior" # Use as a tip

Intermediate/lateral mesoderm

Cluster 22 is the cephalic mesoderm, based on its expression of the markers FOXF2A and FSTA. Clusters
27 and 43 are both hematopoietic lineages, based on their expression of TAL1 and LMO2. Cluster 27 is
likely the Intermediate Cell Mass (erythroid lineage) based on its expression of GATA1A, whereas cluster 43
is likely the Rostral Blood Island (myeloid lineage) based on its expression of SPI1B, an early macrophage
marker. Cluster 40 is the pronephric progenitors, based on its expresion of FOXJ1A and PAX2A. Finally,
cluster 7 is the heart primordium, based on its expression of the classic marker HAND2.

plotDot(object.6s.mnn, genes = c("FSTA", "FOXF2A", "TAL1", "LMO2", "GATA1A", "MORC3B",
"SPI1B", "PAX2A", "FOXJ1A", "HAND2"), clustering = "Infomap-30")

HAND2 - @ (] o ° e o (] LN J [] e o0

FOXJ1A- e ©o . I 6

PAX2A - LN) ° () (X]) 3 ® oo @ o oo X 4
SPI1B - o °
2
@ MORC3B- [
Q
O GATAIA- o
Prop.Exp
LMO2 - o e o 0 . o L] o e o 0o 0 L]
. . ® 025
TAL1 - . L) @ o050
FOXF2A - ° ° @ors
@ 0
FSTA- o] ° . o ° ° o0 0 o ° .

110 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 50 5152535455 6 7 8 9
Cluster

However, the boundary of cluster 27 doesn’t agree with the boundary of expression of the classic markers
of this cell type (GATALIA and MORC3B, for instance). Cluster 56 from the finer resolution Infomap-20
clustering agrees with gene expression more, so we will use that for Hematopoietic (ICM).

grid.arrange(grobs = list(plotDimHighlight(object.6s.mnn, "Infomap-30", "27", legend = F),
plotDim(object.6s.mnn, "GATA1A"), plotDim(object.6s.mnn, "MORC3B"), plotDimHighlight(object.6s.mnn,
"Infomap-20", "56", legend = F)))

10

Infomap-30 (Highlight 27) GATA1A

tSNE2
tSNE2

-40 -
/ !
.25 0 25 25 0 25
tSNE1 tSNE1
MORC3B Infomap-20 (Highlight 56)
20
o g
=z Z
& &
_20-
-40 -
! /
.25 0 25 .25 0 25
tSNE1 tSNE1

22 is cephalic mesoderm?? FSTA, FOXF2A
I30.cluster.assignments["22", "name"] <- "Cephalic Mesoderm"

43 is Hematopoietic (TAL1, LMO2), Rostral Blood Island (SPI1B)
I30.cluster.assignments["43", "name"] <- "Hematopoeitic (RBI)"

Infomap-20 Cluster 56 seems to be a better GATA1A+ cluster.
I20.cluster.assignments["56", "name"] <- "Hematopoeitic (ICM)"

40 seems to be pronephros (PAX2A + FOXJ14)
I30.cluster.assignments["40", "name"] <- "Pronephros"

7 is clearly the heart primordium (expression of HAND2, GATA6, and GATA5)
I30.cluster.assignments["7", "name"] <- "Heart Primordium"

11

Paraxial mesoderm

Clusters 32 and 45 are the adaxial cells, based on their expression of MYL10, MYOD1, and MYOG. (Based
on MYOG, cluster 45 is the more differentiated group of adaxial cells.) Clusters 10 and 15 are the somites,
based on expression of MEOX1, RIPPLY1 and ALDH1A2. Cluster 10 is likely the forming simutes, based
on its continued expression of MESPBA, RIPPLY2 (which is expressed in S-II and S-I), and continued
expression of TBX6. Clusters 25, 18, 5, and 29 are the pre-somitic mesoderm, based on their expression of
TBX6L. Finally, clusters 4 and 16 are tailbud, based on their overlapping expression of SOX2, TA, NOTO,
FGF8A, and WNTSA.
plotDot(object.6s.mnn, genes = c("MYL1O", "MYOD1", "MYOG", "MYF5", "MEOX1", "RIPPLY1",

"ALDH1A2", "RIPPLY2", "MESPBA", "TBX6", "TBX6L", "WNT8A", "FGF8A", "NOTO", "TA",

"S0X2"), clustering = "Infomap-30")

sox2- o @@e® 00 00000 - P00 0000 00 [XXEREERY T ERY BN B X
TA- ° ® o o 00 (X] () o o °
NOTO - ® o0 o o ceee 00 o o o . ° Prop Exp
FGFeA- @ o o « QO@ » ® o ® oo ® oo (] e o o0 00 O OGceoo ® 025
WNT8A - o o o o ° ° e @ o o o o e o o @ 050
TBX6L- @ o O [([J o (] o @ors
Bx6- @ ° (] ° ® o o o @ o

@ MESPBA- @

& RiPpLY2- o o eeo o o o Mean
ALDH1A2- @ (] ° . ° ° () I6
RIPPLY1 - (] ° 0 o e Qe [] . [] C) o0 ooc o0 T) ° .

MEOX1 - [o - ceoe O . LY (RN K) . e o0 ° .
WFs-@ 000e0@® 000:0000000 000 0c00000:0000 0 00 O 000°00000 0 I2
MYOG - []

MYOD1- @ [} [] [] L) .

wio-@ OO0 00000 0000000000000000 00000000000000000000000000000
110 1112 13 14 15 16 17 18 19 2 20 21 22 23 24 2526 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 454647 4849 5 505152535455 6 7 8 9
Cluster
45 and 32 are the adazial cells; 45 seems like the real tip. (ACTA14, MYL10,

ACTC1B, ACTC1A, MEF2D, MYOG)
I30.cluster.assignments["32", "name"] <- "Adaxial Cells" # Don't use as tip

I30.cluster.assignments["45", "name"] <- "Adaxial Cells" # Use as the tip

10 and 15 is the formed somites (MEOX1, RIPPLY1, ALDH1A2)

markers.10v15 <- markersAUCPR(object.6s.mnn, clust.l = "10", clust.2 = "15", clustering = "Infomap-30")
Ripplyl mostly in formed somites, Ripply2 mostly in S-I and S-II MESPBA in

future anterior half of S-II and S-I

I30.cluster.assignments["10", "name"] <- "Somites Forming" # Don't use as tip
I30.cluster.assignments["15", "name"] <- "Somites Formed" # Use as a tip

25/18/5/29 are the PSM.

I30.cluster.assignments["25", "name"] <- "PSM Maturation Zone" # Not a tip
I30.cluster.assignments["18", "name"] <- "PSM Posterior" # Not a tip
I30.cluster.assignments["5", "name"] <- "PSM Intermediate" # Not a tip
I30.cluster.assignments["29", "name"] <- "PSM Intermediate" # Not a tip

Clusters 4 and 16 seems to be the tailbud, based on its expression of WNT84,

FGF8A, NOTO, TA, SOX2. They represent, to some degree the more neural inclined
and more mesoderm inclined tissues (i.e. I think some of the early

differentiation s also in there.)

I30.cluster.assignments["4", "name"] <- "Tailbud" # Use as a tip
I30.cluster.assignments["16", "name"] <- "Tailbud" # Use as a tip

Neural

Clusters 26, 41, and 31 are the neural crest, based on their expression of FOXD3, SOX9B, and SOX10.
Cluster 39 seems to be the floor plate, based on its combined expression of SHHA, SHHB, FOXJ1A, and
FOXA2.
plotDot(object.6s.mnn, genes = c("SO0X10", "SOX9B", "FOXD3", "FOXJ1A", "SHHA", "SHHB",

"FOXA2"), clustering = "Infomap-30")

12

FOXA2- o [] [BCIN]

Prop.Exp
SHHB - o . o ® 025
@ 050
SHHA - @ oo @ors
()
& FOXJ1A- . Mean
) I
4
FOXD3- . o o@® - - O e 00 o @ o oc0c o N
2
SOX9B - LN] [J o e O o e
1
SOX10- . e O °

110 1112 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 20 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 50 5152535455 6 7 & 9
Cluster
26, 46, 31 are neural crest lineages given their high expression of SOX10 and
FOXD3.
I30.cluster.assignments["26", "name"] <- "Neural Crest" # Tip
I30.cluster.assignments["46", "name"] <- "Neural Crest Forming" # Not tip
I30.cluster.assignments["31", "name"] <- "Neural Crest Forming" # Not tip

Cluster 39 —- floor plate??? (FOXJ1A, SHHA, SHHB, FOXA2)
I30.cluster.assignments["39", "name"] <- "Floor Plate" # Try as a tip?

Spinal Cord
Clusters 48, 11, and 14 are spinal cord. 48 and 11 are the more differenciated, given their high expression of
ELAVL3, NEUROD1, NEUROD4, and NEUROGA4.

plotDot(object.6s.mnn, genes = c("ELAVL3", "ISL2B", "NEUROD1", "NEUROD4", "NEUROG1",
"DLA", "OLIG4", "PRDM8", "NKX1.2LA"), clustering = "Infomap-30")

NKX1.2LA - ° . . ° . .
[J (X J [] Mean
PRDMS - [] [] . [] 4
OLIG4 - [° (] o ° e oo 3
2
DLA- @ Qoo oo 00000000 0000 o DO 000 e 0000000 oo I1
i
$ NEUROGT - Y . .) X e O ° e 0o 000 o oo
0]
NEUROD4 - .) ° ° L) Prop.Exp
@® 025
NEUROD1 - oo . ° e o0 . . o @O e oo . ® 050
ISL2B - . Y @ors
@ 0
ELAVL3- o o . (X) ° e oo@ co O . . () 000 o .

110 1112 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 4142 43 44 4546 47 4849 5 5051525635455 6 7 & 9
Cluster
Cluster 48 -- Spinal Cord ELAVL3, ISL2B, NEUROD1
I30.cluster.assignments["48", "name"] <- "Spinal Cord Differentiated" # Tip?

Cluster 11 -- Also spinal cord NEUROD4, NEUROG1, ELAVL3, DLA Difference vs. 48
= higher SOX3, SOX19A (just more progenitor like)
I30.cluster.assignments["11", "name"] <- "Spinal Cord" # Tip?

Cluster 14 -- Spinal Cord Progenitors CHD, HER3, OLIG4, PRDM8, NKX1.2LA
I30.cluster.assignments["14", "name"] <- "Spinal Cord Progenitors" # Not tip

Fore/mid-brain

Clusters 28 and 8 are the midbrain, given their expression of ENG2A, ENG2B, HER5, HER11, and PAX2A.
Cluster 20 is the telencephalon, given its expression of FOXG1A and EMX3. Clusters 12 and 2 are the
optic cup, given their expression of RX3, RX2, and PAX6B. Cluster 23 is the ventral diencephalon, given
its expression of DBX1A, DBX1B, and NKX2.2B. Finally, clusters 17 and 34 are the dorsal diencephalon,
given their expression of LHX5, PAX6A, FOXD1, and OLIG3.

13

plotDot(object.6s.mnn, genes =

c("ENG2B", "ENG2A", "HER5", "HER11", "PAX2A", "FOXG1A",

"EMX3", "DBX1A", "DBX1B", "NKX2.2B", "LHX5", "PAX6A", "FOXD1", "OLIG3", "RX3",
"RX2", "PAX6B"), clustering = "Infomap-30")
PAX6B - o o O [X] [X) ° e o ° (} o O)
RX2- [) [] . .
rxz- o @ o o . ® o o o . .
OLIG3- ° (N} . e) . . ° Mean
FOXD1- . ° ° [}) . l 4
PAX6A - o0 o 00 . O®e (@0 oo oo ° o0 0000 oo 3
LHX5 - o [] () . -
o NKX2.28- . 00 oo o I 1
& DBXIB- ° . o0
0]
DBX1A- oo ce@® o ° ° T T * ° Prop.Exp
EMX3 -) [] [N] ° o0 ® 025
FOXG1A- []] ® oo @ 050
PAX2A - o0 ° [] (X} . . ® oo () ° o (X} @ ors
HER11- @ L] o [] . o L) o [] . 1.00
HER5- ® e De . ° [) ° °
ENG2A - o ° . [) e o 00
ENG2B - . . o . . @e O o <o 00 o °
110 1112 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 505152535455 6 7 8 9
Cluster

Cluster 28 & 8 Midbrain ENG2B, ENG2A, HER5, HER11, PAX2A
I30.cluster.assignments["28", "name"] <- "Midbrain" # Use as tip
I30.cluster.assignments["8", "name"] <- "Midbrain" # Don't use as tip

20 - Telencephalon FOXG1A / EMX3
I30.cluster.assignments["20", "name"] <- "Telencephalon" # Use as a tip

23 - Ventral Diencephalon NKX2.4B / NKX2.4A / NKX2.1 / DBX1A / DBX1B / SHHA /
NKX2.2B

I30.cluster.assignments["23", "name"] <- "Diencephalon Ventral" # Don't use as a tip
34 / 17 - Dorsal Diencephalon ARX / LHX5 / PAX6A / FOXD1 / OLIG3 / OLIG2 Major

differences between the clusters seem to be cell cycle, translation related, so

think these clusters should be combined.
I30.cluster.assignments["34", "name"] <- "Dorsal Diencephalon"
I30.cluster.assignments["17", "name"] <- "Dorsal Diencephalon"

Use as a tip
Use as a tip

12 / 2 - Optic Vesicle RX3 / RX2 / HMX4 / PAX6B / MAB21L2 Differential markers
are cell cycle related; think these clusters should be combined.
I30.cluster.assignments["12", "name"] <- "Optic Cup" # Use as a tip,
I30.cluster.assignments["2", "name"] <- "Optic Cup" # Use as a tip

but combined

Hindbrain

It seems that for the hindbrain, Infomap-30 doesn’t have enough resolution, based on the cluster boundaries
and the boundaries of expression of the best cluster markers. Going to use Infomap-20 for clustering in this
region.

It seems that cluster 21 is rhombomeres 5 & 6 (given its expression of MAFBA /VAL). Thus cluster 52 must
be rhombomere 3 (given its expression of EGR2B/KROX20 and that cluster 21 contains rhombomere 5).
Cluster 41 is rhombomere 4, since it expresses FGF8A. Clusters 6 and 22 are rhombomere 7, given their
expression of HOXD4A and HOXA3A.

120.hb.clusters <- c("21", "52", "4i", "M v24n, nweh nDDM)

Try Infomap-20 clusters for hindbrain?

plotDot (object.6s.mnn, genes = c("HOXB1A", "HOXA2B", "HOXB2A", "HOXA3A", "HOXB3A",
"HOXB4A", "HOXD4A", "EGR2B", "MAFBA", "FGF8A", "FGFR3", "EFNB2A"), clustering = "Infomap-20",
mean.expressing.only = T, clusters.use = i20.hb.clusters)

14

EFNB2A - [] [] [] L] [] []]

Mean
FGFR3 - f | ' I 4
FGF8A- . L4
3
MAFBA - ()
EGR2B- () () . ° I 2
i
& HOXD4A - .
]
HOXB3A - . . L] Prop.Exp
HOXA3A - (] ° () @ 02
HOXB2A - °) ° @ o4
® ! @ os
HOXA2B -
@ s
HOXB1A - () ° °
21 52 4 2 24 6 2
Cluster

21 is Thombomere 5/6
I20.cluster.assignments["21", "name"] <- "Hindbrain R5+6"

52 is rThombomere 3
I20.cluster.assignments["52", "name"] <- "Hindbrain R3"

41 is rhombomere 4
I20.cluster.assignments["41", "name"] <- "Hindbrain R4"

I20.cluster.assignments["2", "name"] <- "Hindbrain" # Don't use as tip
(What exactly is this? Some kind of as yet unpatterned hindbrain progenitors?)

6 and 22 are rhombomere 7?
I20.cluster.assignments["6", '"name"] <- "Hindbrain R7"
I20.cluster.assignments["22", "name"] <- "Hindbrain R7"

Non-neural ectoderm

Cluster 47 is the integument, given its expression of FOXI3A, FOXI3B, MYB, and GCM2. Cluster 13 is
the neural plate border, given its expression of CRABP2A and DLX3B. Cluster 1 is the epidermis given its
expression of GATA2A, TBX2B, and CYP2K16.

plotDot(object.6s.mnn, genes = c("FOXI3A", "FOXI3B", "MYB", "GCM2", "DLX3B", "CRABP2A",
"GATA2A", "TBX2B", "CYP2K16"), clustering = "Infomap-30")

cyP2k16 - @ . . 0 o ° o ® o - o0
Prop.Exp
TBX28 - @ O o o 00 L) ee O o000 O oo ° ® 025
GATA2A- . ° ° ° XY) c Qoo . @ 050
@ors
crAePA- 0 @0 00000 0000000000000000 00000°0000000000°000000000000
i
§ DLX3B- e e coe @ Vecoe® o0 0o 0o o o e® O . ®@®e e o Mean
o
GCM2 - I4
3
MYB - e o L]]
FOXI3B - I1
FOXI3A - o
110 1112 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 4243 44 4546 47 48 49 5 505152535455 6 7 8 9
Cluster

47 is integument? FOXI3A / FOXI3B / MYB / GCM2
I30.cluster.assignments["47", "name"] <- "Integument" # Use as a tip

Non-neural ectoderm Cluster 13 is the neural plate border
I30.cluster.assignments["13", "name"] <- "Neural Plate Border" # Use as a tip

Cluster 1 is the epidermis
I30.cluster.assignments["1", "name"] <- "Epidermis" # Use as a tip

Pre-placodal ectoderm

15

Down in the pre-placodal ectoderm / placode territory, it seems like Infomap-30 doesn’t really have enough
resolution, based on the cluster boundaries vs. the expression domains of the top markers of those clusters.
Thus, going to use Infomap-20 clusters for this region.

Cluster 49 is the lens placode (PITX3+). Cluster 74 is olfactory placode (FOXN4+, EBF2/COE+, SIX3B+,
DLX4B+). Cluster 46 is the adenohypophyseal placode (stronger SIX3B, DLX4B, HESX1). Cluster 28 is
the epibranchail placode (FOXI1+, PAX8+). Cluster 54 is the otic placode (ATOH1B, TBX2B, PAX2A).
Cluster 33 is the trigeminal placode (KLF17, IRX1A, P2RX3A).

plotDot(object.6s.mnn, genes = c("PITX3", "PITX1", "FOXE3", "FOXN4", "EBF2", "SIX3B",
"DLX4B", "HESX1", "PAX8", "FOXI1i", "TBX2B", "ATOH1B", "MCF2LB", "PAX2A", "P2RX3A",
"IRX1A", "KLF17"), clustering = "Infomap-20", clusters.use = c("49", "74", "46",
"28”, 1154“’ ||33||))

KLF17 - ° .
IRX1A - ° o
P2RX3A - °
PAX2A - ® Prop.Exp
MCF2LB - [] @® 025
ATOH1B - ° @ o050
TBX2B - ° @ors
o FOX1- [] . [[]
& PAXs- Mean
9] 4
HESX1 - ° .
DLX4B -) () ° (] ® 3
SIX3B - () ° 2
EBF2- ° I ;
FOXN4 - o
FOXE3- °
PITX1- °
PITX3 - o o .
49 74 4 28 54 33
Cluster
Looks like 49 really is the lems. (PITX3, PITX1, SIX7, FOXE3)
I20.cluster.assignments["49", "name"] <- "Placode Lens"

74 is olfactory (FOXNj, EBF2, PRDMS, GATAD2B)
I20.cluster.assignments["74", "name"] <- "Placode Olfactory"

46 is adenohypophyseal SIX3B, DLX4B, DLX3B, HESX1,
I20.cluster.assignments["46", "name"] <- "Placode Adenohypophyseal"

28 is/includes epibranchial -- seems right from PAX8 FOXI1, PAX8, FOXI1,
PRDM12B, NKX2.3, GBX2
I20.cluster.assignments["28", "name"] <- "Placode Epibranchial"

54 is otic ATOH1B? MCF2LB? STC2A? GBX2? ROBO4? DLX3B? S0X9A? (otic) (otic)
TBX2B ATOH1B PAX2A SOX9A
I20.cluster.assignments["54", "name"] <- "Placode Otic"

33 is trigeminal placode P2RX3A IRX1A KLF17
I20.cluster.assignments["33", "name"] <- "Placode Trigeminal"

Non-blastoderm

Cluster 53 is the EVL / Periderm (all of the keratins!). Cluster 55 is the PGCs (DDX4, HIM, NANOS3).
Cluster 54 seems to be mostly YSL-related markers, and should not be used in tree-building.

plotDot(object.6s.mnn, genes = c("KRT17", "KRT5", "KRT4", "KRT92", "KRT18", "LYE",
"DDX4", "DND1i", "H1M", "NANOS3"), clustering = "Infomap-30")

16

NANOS3 - o

Prop.Exp
H1M- . @® 025
DND1 - @ o050
Qo
- L] L]
DDXx4 . 1.00

LYE-@ © © o @ © 06 0 00O ° ® e 0o 000000000000 @000 o0 o0 0 o o e 0 0 [] LN)
kKrT15- @ 000000000000 00000000000000000 00000000000000000000000 Ve
r12- 000000 000000000000000000000000000000000000°000000000000 la
R4+ 000 000000000000000000000000000000000 00 O 000 @O c0000 4
75 -G OO0 0000 00000000000000000000000000000000000000 0100000 lz

KRT17 - @] @0 oo o0 o ° o0 L) ® e 0 0 o e e e 00 o ® e 0 (X] o060 ¢ @ () ° °
6

Gene

©- @

11011121314 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 50 51 52 53 54 55 7 8

Cluster
The EVL population seems to need to be cleaned up however — some cells are really good expressers of the
EVL markers, whereas others are not.

evl.score <- apply(object@logupx.data[c("LYE", "KRT18", "KRT92", "KRT4", "KRT5",
"KRT17"), cellsInCluster(object.6s.mnn, "Infomap-30", "53")], 2, sum.of.logs)

new.evl <- names(which(evl.score > 9))
remove.evl <- names(which(evl.score <= 9))

53 - EVL/Periderm KRT17, KRT5, KRT/, KRT92, KRT18, LYE FOXI3A / FOXI3B / MYB /
GCM2
I30.cluster.assignments["53", "name"] <- "EVL/Periderm" # Use as a tip

55 - PGCs DDX4 / H1M / NANOS3
I30.cluster.assignments["55", "name"] <- "Primordial Germ Cells"

64 - YSL/yolk APOA1B / PVALBY9 / SEPP14 / CTSLL Top markers are not particularly
great markers and are either ubiquitous or yolk-associated. This s

contamination.

I30.cluster.assignments["54", "name"] <- "YSL" # Don't use as a tip

Generate final clusterings

Combine clustering assignments from two clusterings
I30.cluster.assignments$clustering <- "Infomap-30"
I20.cluster.assignments$clustering <- "Infomap-20"

cluster.assignments <- rbind(I30.cluster.assignments, I20.cluster.assignments)

Remove any clusters that weren't assigned an identity
cluster.assignments <- cluster.assignments[!is.na(cluster.assignments$name),]

Renumber clusters
cluster.assignments$cluster.new <- l:nrow(cluster.assignments)

Create blank clusterings in the 6-somite object
object.6s.mnn@group.ids$clusters.6s.name <- NA
object.6s.mnn@group.ids$clusters.6s.num <- NA

Copy cell identities over for each cluster
for (i in 1l:nrow(cluster.assignments)) {
cells <- cellsInCluster(object.6s.mnn, clustering = cluster.assignments[i, "clustering"],
cluster = cluster.assignments[i, "cluster"])
object.6s.mnn@group.ids[cells, "clusters.6s.name"] <- cluster.assignments[i,
"name u]
object.6s.mnn@group.ids[cells, "clusters.6s.num"] <- as.character(cluster.assignments[i,
"cluster.new"])

}
Remove the bad cells from cluster 53 that aren't EVL.

object.6s.mnn@group.ids[remove.evl, "clusters.6s.name"] <- NA
object.6s.mnn@group.ids[remove.evl, "clusters.6s.num"] <- NA

17

Transfer clusterings to main object

Need to transfer cluster identities from the 6-somite only object to the full object.
object@group.ids$ ZF6S-Infomap-30~ <- NA
object@group.ids[rownames(object.6s.mnn@group.ids), "ZF6S-Infomap-30"] <- object.6s.mnn@group.ids$ Infomap-30"

object@group.ids$ ZF6S-Infomap-20" <- NA
object@group.ids[rownames (object.6s.mnn@group.ids), "ZF6S-Infomap-20"] <- object.6s.mnn@group.ids$ Infomap-20"

object@group.ids$ ZF6S-Cluster™ <- NA
object@group.ids[rownames(object.6s.mnn@group.ids), "ZF6S-Cluster"] <- object.6s.mnn@group.ids$clusters.6s.name

object@group.ids$ ZF6S-Cluster-Num®~ <- NA
object@group.ids[rownames(object.6s.mnn@group.ids), "ZF6S-Cluster-Num"] <- object.6s.mnn@group.ids$clusters.6s.num

Save objects

We save here the 6-somite object, the full object with our 6-somite clustering added to it, and also a
data.frame of the tips that can be used during further inspection to annotate which tips should be used in
the tree building.

saveRDS(object, file = "obj/object_4_withTips.rds")

saveRDS(object.6s.mnn, file = "obj/object_6s.rds")

write.csv(cluster.assignments, file = "dm-plots/tips-use.csv")

Plot tips in diffusion map

Not all clusters from the final stage should really comprise tips of the developmental tree — progenitor
populations that remain should be excluded. For instance, embryos at 6-somite stage contain both somites
(a terminal population) and pre-somitic mesoderm that will give rise to additional somites later; the pre-
somitic mesoderm should not be a separate tip in the tree.

Here, we show a couple of good plots. For ‘bad’ clusters that shouldn’t be used as tips, all combinations of
diffusion components will not separate the cells significantly.
object@group.ids$pop <- NA
object@group.ids[cellsInCluster(object, "ZF6S-Cluster", "Epidermis"), "pop"] <- "1"
plotDim(object, label = "pop", plot.title = "Epidermis, DCs 17 vs. 18", reduction.use = "dm",
dim.x = 17, dim.y = 18, legend = F, alpha = 0.35)

Epidermis, DCs 17 vs. 18

0.031

DC18

-0 I05 0.;)0 0.2)5
DC17
object@group.ids$pop <- NA
object@group.ids[cellsInCluster(object, "ZF6S-Cluster", "Cephalic Mesoderm"), "pop"] <- "1"
plotDim(object, label = "pop", plot.title = "Cephalic Mesoderm, DCs 15 vs. 16", reduction.use = "dm",
dim.x = 15, dim.y = 16, legend = F, alpha = 0.35)

18

Cephalic Mesoderm, DCs 15 vs. 16

DC16

-0.1 0:0 0.1 0.2
DC15
object@group.ids$pop <- NA
object@group.ids[cellsInCluster(object, "ZF6S-Cluster", "Heart Primordium"), "pop"] <- "1"
plotDim(object, label = "pop", plot.title = "Heart Primordium, DCs 25 vs. 26", reduction.use = "dm",
dim.x = 25, dim.y = 26, legend = F, alpha = 0.35)

Heart Primordium, DCs 25 vs. 26

§

DC26

19

URD 4: Biased Random Walks

library (URD)

Load previous saved object

object <- readRDS("obj/object_4_withTips.rds")

Biased Random Walks

Define parameters of logistic function to bias transition probabilities

diffusion.logistic <- pseudotimeDeterminelLogistic(object, "pseudotime", optimal.cells.forward = 40,

max.cells.back = 80, pseudotime.direction = "<", do.plot = T, print.values = T)
Qe] |
A
| |
(O] | () I
= 0 [% I
O o- — | .. |
E | [} |
© | L |
O] I ° I
°a © | L I
() o ! L |
I L I
o < ! ° [
o o [° |
I L4 I
8 [* I
= | b |
@© N °
c o - | .. |
(.) | [) |
| ° I
| |
S ' .\N“
(@]]
| | |
-0.001 0.000 0.001 0.002

Delta pseudotime

[1] "Mean pseudotime back (~80 cells) 0.00138123109435677"
[1] "Chance of accepted move to equal pseudotime is 0.81741461840178"
[1] "Mean pseudotime forward (~40 cells) -0.000702878135827306"

Run walks on cluster

Biased random walks were run on the cluster using the scripts URD-TM.R, URD-TM.sh (to build a biased
transition matrix that could be re-used for each tip), and then URD-Walks.R and URD-Walks.sh to parallelize
the process of walking from each tip. The commands run by the scripts (if you have a smaller data set that
could run on a laptop, for instance) were:

Create biased transition matrix
biased.tm <- pseudotimeWeightTransitionMatrix(object, pseudotime = "pseudotime",
logistic.params = diffusion.logistic, pseudotime.direction = "<")

Define the root cells
root.cells <- rownames(object@meta) [object@meta$STAGE == "ZFHIGH"]

Define the tip cells

tips <- setdiff (unique(object@group.ids[, clustering]), NA)

this.tip <- tips[tip.to.walk] # tip.to.walk was passed by the cluster job array.
tip.cells <- rownames(object@group.ids) [which(object@group.ids[, clustering] == this.tip)]

Do the random walks

these.walks <- simulateRandomWalk(start.cells = tip.cells, transition.matrix = biased.tm,
end.cells = root.cells, n = walks.to.do, end.visits = 1, verbose.freq = round(walks.to.do/20),
max.steps = 5000)

Process walks from cluster

We then load the pre-run walks from the cluster, and process them to determine the visitation frequency of
each cell by the walks from each tip. This determines the developmental trajectories, and will be used to
determine the branching structure in the data.

Get list of walk files

tip.walk.files <- list.files(path = "walks/dm-8-tm-40-80/", pattern = ".rds", full.names = T)

Which tips were walked?
tips.walked <- setdiff(unique(object@group.ids$ ZF6S-Cluster-Num), NA)

Run through each tip, load the walks, and process them into wvisitation
frequency for that tip.
for (tip in tips.walked) {
Get the files for that tip
tip.files <- grep(pasteO("walks-", tip, "-"), tip.walk.files, value = T)
if (length(tip.files) > 0) {
Read the files into a list of lists, and do a mon-recursive unlist to combine
into onme list.
these.walks <- unlist(lapply(tip.files, readRDS), recursive = F)
object <<- processRandomWalks(object, walks = these.walks, walks.name = tip,
verbose = F)

Save objects

saveRDS(object, file = "obj/object_b_withWalks.rds")

URD 5: Build Tree

library (URD)
library(rgl)

Set up knitr to capture rgl output
rgl::setupKnitr()

Load previous saved object

object <- readRDS("obj/object_5_withWalks.rds")

Refine the walks before building the tree

A few clusters that were run as separate tips are totally intermixed in the diffusion map. In these cases, it’s
often best to combine the two tips before starting to build the tree. (This averages their visitation frequency,
according to the number of cells in each tip, and avoids having to re-run the random walks.)

Load tip cells
object <- loadTipCells(object, tips = "ZF6S-Cluster-Num")

Combine a few sets of tips where you walked from two groups of cells that
probably should be considered one, based on the fact that they are intermized
in the diffusion map.

Diencephalon
object <- combineTipVisitation(object, "14", "27", "14")
object <- combineTipVisitation(object, "14", "19", "19")

Optic Cup
object <- combineTipVisitation(object, "2", "9", "2")

Combine epidermis and integument
object <- combineTipVisitation(object, "1", "36", "1")

Tailbud
object <- combineTipVisitation(object, "3", "13", "3")

Build the tree

Additionally, only “tips” that are actually terminal populations should be used in construction of the tree if

possible. We ran random walks from all 6-somite clusters, and so we exclude several of them here, based on

prior knowledge or based on their position in the diffusion map.

Decide on the tips to use in the tree construction

tips.to.exclude <- C(u4n, MM, mym,owgm owqqn owq3n onqgn o wqgn o wgqu - wo3n . wogn
ll25ll’ ll27ll’ II28||’ ||30||’ H35H’ ll36ll’ ll37ll’ II39I|’ ||41||’ H42H’ ll44ll)

tips.to.use <- setdiff(as.character(1:53), tips.to.exclude)

Build the tree

object.built <- buildTree(object = object, pseudotime = "pseudotime", divergence.method = "ks",
tips.use = tips.to.use, weighted.fusion = T, use.only.original.tips = T, cells.per.pseudotime.bin = 80,
bins.per.pseudotime.window = 5, minimum.visits = 1, visit.threshold = 0.7, p.thresh = 0.025,
save.breakpoint.plots = NULL, dendro.node.size = 100, min.cells.per.segment = 10,
min.pseudotime.per.segment = 0.01, verbose = F)

Name the tips

Automated first pass

First, just use the names of the clusters to inspect the tree structure.

tip.names <- unique(object@group.ids[, c("ZF6S-Cluster", "ZF6S-Cluster-Num")])

tip.names <- tip.names[complete.cases(tip.names),]
object.built <- nameSegments(object.built, segments

tip.names$ ZF6S-Cluster—-Num~,

tip.names$ ZF6S-Cluster ™)

segment .names

plotTree(object.built)

awiopnasd

Manual refinement

And then after inspecting the tree, choose a set of refined names to use going forward, including short names
that will look better in the force-directed layout.
Descriptive names that will be used on dendrogram
new.seg.names <- c("Spinal Cord", "Diencephalon", "Optic Cup", "Midbrain+Neural Crest",
"Hindbrain R3", "Hindbrain R4+5+6", "Telencephalon", "Epidermis", "Neural Plate Border",
"Placode Adeno.+Lens+Trigeminal", "Placode Epibranchial+0Otic", "Placode Olfactory",
"Tailbud", "Adaxial Cells", "Somites", "Hematopoietic (ICM)", "Hematopoietic (RBI)+Pronephros",
"Endoderm Pharyngeal", "Endoderm Pancreatic+Intestinal", "Heart Primordium",
"Cephalic Mesoderm", "Prechordal Plate", "Notochord", "Primordial Germ Cells",
"EVL/Periderm")

Short names / Abbreviations for use on force-directed layout

new.short.names <- c("SC", "Di", "Optic", "MB+NC", "HB R3", "HB R4-6", "Tel", "Epi",
"NPB", "P(A+L+T)", "P(E+Ot)", "P(01f)", "TB", "Adax", "Som", "Hem(ICM)", "Hem(RBI)+Pro",
"Endo Phar", "Endo Pan+Int", "Heart", "CM", "PCP", "Noto", "PGC", "EVL")

Segment numbers
SegS.tO.na.me <_ c(ll8ll’ "19"’ I|2ll’ ll59ll’ I|50||, ||56||, ||16Il’ ll1||’ ||1OII’ ll55ll’ ll57ll’
IISSII, ||3||, 113411, ||12n’ ||52||’ "58", II17II, "26”, ||5||, "18”, 1129n’ ||32||’ ||4o||, "38”)

Run the naming
object.built <- nameSegments(object.built, segments = segs.to.name, segment.names = new.seg.names,
short.names = new.short.names)

plotTree(object.built, label.segments = T)

Pseudotime

Check out gene expression in dendrogram

genes.plot <- c("sSOX17", "NOTO", "TA", "GSC", "MEOX1", "GATA2A", "NANOS3", "KRT4",
"FSTA", "WNT8A", "CRABP2A", "EGR2B", "ENG2B", "TAL1", "MAFBA", "EMX3")

plot(plotTree(object.built, gene))

for (gene in genes.plot) {

SOX17

awijopnasd

NOTO

awinopnasd

TA

awnopnasd

GSC

awiopnasd

MEOX1

awiopnasd

GATA2A

n < o N «— O

awiopnasd

NANOS3

awiopnasd awnopnasd

FSTA

awiopnasd

WNTB8A

<t ™ N «— O

awiopnasd

CRABP2A

nw T ® N «— O

nw T ® N «— O

awiopnasd

awiopnasd

ENG2B

awiopnasd

nw <+ ® N «— O

TALA1

awnopnasd

10

MAFBA

nw I ® N «~ O

<t ™

awnopnasd

awiopnasd

11

Generate a force-directed layout

We generate a force-directed layout as a nice visualization of the data. It is constructed by generating a
weighted k-nearest neighbor network, based on euclidean distance in visitation space (using the frequency of
visitation of each cell by the walks from each tip). The nearest neighbor network is optionally refined based
on cells’ distance in the dendrogram (in terms of which segments are connected). Cells then push and pull
against their neighbors, as the amount of freedom they have to move is slowly decreased until cells are locked
into place. This produces a two-dimensional layout, and we then add pseudotime as a third dimension.

Choose cells that were visited more robustly

We find that the force directed layout works best if the most poorly visited (and thus likely poorly connected)

cells are excluded.

Data frame to measure cell wvisitation

visitation <- data.frame(cell = rownames(object.built@diff.data), seg = object.built@diff.data$segment,
stringsAsFactors = F, row.names = rownames(object.built@diff.data))

visitation$visit <- loglO(apply(visitation, 1, function(cr) object.built@diff.datalas.character(cr["cell"]),
pasteO0("visitfreq.raw.", as.character(cr["seg"]1))]) + 1)

Choose those cells that were well wvistited
robustly.visited.cells <- visitation[visitation$visit >= 0.5, "cell"]

Since some tips of the tree were combined in their entirety, get the terminal
segments to use as the tips of the force-directed layout.
final.tips <- segTerminal(object.built)

Calculate layout

It can be important to try several sets of parameters here. Varying the number of nearest neighbors (num.nn)
and the amount of refinement based on the dendrogram (cut.unconnected.segments) affects the layout sig-
nificantly.

Generate the force-directed layout

object.built <- treeForceDirectedLayout(object.built, num.nn = 120, pseudotime = '"pseudotime",
method = "fr'", dim = 2, cells.to.do = robustly.visited.cells, tips = final.tips,
cut.unconnected.segments = 2, min.final.neighbors = 4, verbose = F)

Once calculated and plotted, the plot can be rotated to a desired view, and you can save the view using the
function plotTreeForceStore3DView. Thus, many plots with a comparable orientation can then be produced.

Load saved layout

Since the force-directed layout is not deterministic, we instead load a saved layout and orientation to finish
the tutorial.

Load view
object.built@tree$force.view.list <- readRDS("fdls/force.view.list.rds")
object.built@tree$force.view.default <- "figurel"

Load layout
precalc.fdl <- readRDS("fdls/layout.51.cells05.nn120.mn4.cut2.rds")
object.built@tree$walks.force.layout <- precalc.fdl$walks.force.layout

plotTreeForce(object.built, "segment", alpha = 0.2, view = "figurel")

12

Wata

%

P sfin gl
.

Hand-tune the tree

For optimal 2D presentation in the paper, we further tuned the layout by hand to reduce overlaps and ensure
as much of the tree is visible simultaneously as possible. This was done by increasing the angular distance
at the first branchpoint, and moving the two completely disconnected populations (EVL & PGCs).

ECTODERM

Rotate the ectoderm branch around the z-azis to optimize the orientation of the

neural and nmon-neural ectoderm later.

object.built <- treeForceRotateCoords(object.built, seg = "72", angle = -3.3, axis = "z",
around.cell = 10, throw.out.cells = 1000, pseudotime = "pseudotime")

Curve the ectoderm outwards and forwards, to prevent it overlapping the
mesoderm, so that the branching structure within the two domains is eastily
viewed.
for (throw.out in c(0, 100, 250, 500, 1000)) {
object.built <- treeForceRotateCoords(object.built, seg = "72", angle = pi/20,
axis = "y", around.cell = 10, throw.out.cells = throw.out, pseudotime = "pseudotime")
}
for (throw.out in c(0, 100, 250, 500, 1000)) {
object.built <- treeForceRotateCoords(object.built, seg = "72", angle = pi/24,
axis = "z", around.cell = 10, throw.out.cells = throw.out, pseudotime = "pseudotime")

}
AXIAL MESODERM

Rotate the azial mesoderm a bit to the right to make some extra space for the
remainder of the mesendoderm.

object.built <- treeForceRotateCoords(object.built, seg = "79", angle = -pi/10, axis = "y",

around.cell = 10, throw.out.cells = 0, pseudotime = "pseudotime")
object.built <- treeForceRotateCoords(object.built, seg = "79", angle = -pi/8, axis = "x",
around.cell = 10, throw.out.cells = 0, pseudotime = "pseudotime")

13

REMAINDER OF THE MESENDODERM

Rotate the rest of the mesoderm a bit to the right into the empty space between
the ectoderm and azial mesoderm.

object.built <- treeForceRotateCoords(object.built, seg = "78", angle = pi/4, axis = "z",
around.cell = 10, throw.out.cells = 0, pseudotime = "pseudotime")

object.built <- treeForceRotateCoords(object.built, seg = "78", angle = -pi/5, axis = "y",
around.cell = 10, throw.out.cells = 0, pseudotime = "pseudotime'")

PGCs

The PGCs are disconnected from the tree totally, so just rotate and move them
into place.

object.built <- treeForceRotateCoords(object.built, seg = "40", angle = -pi/2, axis = "y",

around.cell = 1, throw.out.cells = 0, pseudotime = "pseudotime")
object.built <- treeForceTranslateCoords(object.built, seg = "40", x = 0, y = O,
z = -3)

EVL / Periderm

The EVL/Periderm %s also nearly completely disconnected. Rotate these cells,
and also close the enormous gap in them somewhat so that they fit neatly next
to the ectoderm.

Determine the EVL cells
evl.cells <- intersect(cellsInCluster(object.built, "segment", "38"), rownames(object.built@tree$walks.force.layout))
evl.cells.move.1l <- evl.cells[which(object.built@tree$walks.force.layout[evl.cells,
"telescope.pt"] > 15)]
evl.cells.move.2 <- evl.cells[which(object.built@tree$walks.force.layout[evl.cells,
"telescope.pt"] > 30)]

Close the gaps a bit in this lineage to shorten it so that it doesn't overlap

with the ectoderm

object.built <- treeForceTranslateCoords(object.built, cells = evl.cells.move.l,
x=0, y=0, z=-10)

object.built <- treeForceTranslateCoords(object.built, cells = evl.cells.move.2,
x =0, y=0, z=-15)

Rotate the EVL cells in next to the ectoderm
object.built <- treeForceRotateCoords(object.built, seg = "38", angle = 1.35, axis = "y",
around.cell = 1, throw.out.cells = 0, pseudotime = "pseudotime")

plotTreeForce(object.built, "segment", alpha = 0.2, view = "figurel")

14

% o

- o
ﬂb‘“ N .,,;.;-,.m;ou s % PGC
'

Check out gene expression in the force-directed layout

plotTreeForce(object.built, "S0X17", alpha = 0.2, view = "figurel")

d
har
Endo‘rénum
f ’
rd

o A

4
Ry u‘Hem(ICM)
. (RBY+PrO 4
RS, /
Eac 4%

15

plotTreeForce(object.built, "GSC", alpha = 0.2, view = "figurel")

;E?nM;har

Endo. F?sn +Int

plotTreeForce(object.built, "NOTO", alpha = 0.2, view = "figurel")

& g o0 5 % PGC

o
-, R . |
’ ¢

plotTreeForce(object.built, "TAL1", alpha = 0.2, view = "figurel")

16

T, paiesm gl L o0 40 ¥ PGCT°

plotTreeForce(object.built, "GATA2A", alpha = 0.2, view = "figurel")

‘e, eusoymfad L o w5 * PGOY

plotTreeForce(object.built, "SOX19A", alpha = 0.2, view = "figurel")

17

Save objects

saveRDS(object.built, file = "obj/object_6_tree.rds")

18

URD 6: Gene Expression Cascades

library (URD)

Load previous saved object

object <- readRDS("obj/object_6_tree.rds")

Differential expression with precision-recall along URD dendro-
gram

For each population, we worked backward along that population’s trajectory, starting at the tip. We com-
pared cells in each segment pairwise with cells from each of that segment’s siblings and children (cropped
to the same pseudotime limits as the segment under consideration). Genes were considered differentially
expressed if they were expressed in at least 10% of cells in the trajectory segment under consideration, their
mean expression was upregulated 1.5x compared to the sibling and the gene was 1.25x better than a random
classifier for the population as determined by the area under a precision-recall curve. Genes were considered
part of a population’s cascade if, at any given branchpoint, they were considered differential against at least
60% of their siblings, and they were not differentially upregulated in a different trajectory downstream of
the branchpoint (i.e. upregulated in a shared segment, but really a better marker of a different population).

Precision-recall tests along tree

We performed tests along the tree for all blastoderm trajectories. Segment 64 was skipped, as it contained
only 25 cells, and was too sensitive to random variations in expression level.
Determine tips to run DE for
tips.to.run <- setdiff(as.character(object@tree$segment.names), c("Primoridal Germ Cells",
"EVL/Periderm"))
genes.use <- NULL # Calculate for all genes

Calculate the markers of each other population.
gene.markers <- list()
for (tipn in 1:length(tips.to.run)) {

tip <- tips.to.run[tipn]

print(paste0(Sys.time(), ": ", tip))

markers <- aucprTestAlongTree(object, pseudotime = "pseudotime", tips = tip,
log.effect.size = 0.4, auc.factor = 1.25, max.auc.threshold = 0.85, frac.must.express = 0.1,
frac.min.diff = 0, genes.use = genes.use, root = "81", only.return.global = F,
must.beat.sibs = 0.6, report.debug = T, segs.to.skip = "64")

saveRDS (markers, file = pasteO('cascades/aucpr/", tip, ".rds"))

gene.markers[[tip]] <- markers

Warning in as.POSIX1t.POSIXct(x, tz): unknown timezone 'zone/tz/2017c.1.0/
zoneinfo/America/New_York'

[1] "2018-02-24 16:40:27: Spinal Cord"

[1] "2018-02-24 16:53:48: Diencephalon"

[1] "2018-02-24 17:05:59: Optic Cup"

[1] "2018-02-24 17:15:51: Midbrain+Neural Crest"

[1] "2018-02-24 17:25:31: Hindbrain R3"

[1] "2018-02-24 17:36:24: Hindbrain R4+5+6"

[1] "2018-02-24 17:46:17: Telencephalon"

[1] "2018-02-24 17:57:23: Epidermis"

[1] "2018-02-24 18:15:23: Neural Plate Border"

[1] "2018-02-24 18:33:48: Placode Adeno.+Lens+Trigeminal"
[1] "2018-02-24 18:46:49: Placode Epibranchial+Otic"

[1] "2018-02-24 18:59:36: Placode Olfactory"

[1] "2018-02-24 19:15:32: Tailbud"

[1] "2018-02-24 19:22:49: Adaxial Cells"

[1] "2018-02-24 19:29:54: Somites"

[1] "2018-02-24 19:34:51: Hematopoeitic (ICM)"

[1] "2018-02-24 19:42:04: Hematopoeitic (RBI)+Pronephros"
[1] "2018-02-24 19:48:53: Endoderm Pharyngeal"

[1] "2018-02-24 19:54:33: Endoderm Pancreatic+Intestinal"
[1] "2018-02-24 20:00:26: Heart Primordium"

[1] "2018-02-24 20:05:11: Cephalic Mesoderm"

[1] "2018-02-24 20:10:07: Prechordal Plate"

[1] "2018-02-24 20:15:28: Notochord"

[1] "2018-02-24 20:20:43: Primordial Germ Cells"

Segment 75 gave numerous markers that did not appear to be overall markers of the trajectories that pass
through segment 75 when plotted on the tree. Thus, we excluded markers that were solely upregulated in
segment 75.

Segment 75 was giving very bizarre differential expression results, so we

removed any markers that were only markers in segment 75.

pops.fix <- c("Endoderm Pharyngeal", "Endoderm Pancreatic+Intestinal", "Hematopoeitic (ICM)",
"Hematopoeitic (RBI)+Pronephros")

for (pop in pops.fix) {
mc <- gene.markers[[pop]l]$marker.chain
seg.good <- grep("75", names(mc), value = T, invert = T)
mark.ok <- unique(unlist(lapply(mc[seg.good], rownames)))
mark.keep <- intersect(mark.ok, rownames(gene.markers[[pop]l]$diff.exp))
gene.markers[[pop] 1$diff.exp <- gene.markers[[pop]]$diff.exp[mark.keep,]
saveRDS(gene.markers[[pop]l], file = paste0O("cascades/aucpr/", pop, ".rds"))

Precision-recall tests by stage for PGCs and EVL

The primordial germ cells (PGCs) and enveloping layer cells (EVL) are distinct from the beginning of our
tree. Thus, they are not divided up into small segments, and our differential expression test along the tree
performed poorly for them. So, instead, we divided cells into five groups, based on their developmental stage,
and performed pairwise comparisons at each stage using the precision-recall approach, and kept those genes
that were markers of at least 3 groups.

Define cell populations

evl.cells <- cellsInCluster(object, "segment", "38")

pgc.cells <- cellsInCluster(object, "segment", "40")

blastoderm.cells <- cellsInCluster(object, "segment", segChildrenAll(object, "81",
include.self = T))

Copy STAGE to group.ids for the TestByFactor function
object@group.ids$STAGE <- object@meta[rownames(object@group.ids), "STAGE"]

Define stage groups
roups <- list(c("ZFHIGH", "ZFOBLONG"), c("ZFDOME", "ZF30"), c("ZF50", "ZFS", "ZF60"),
group

c("ZF75", "ZF90"), c("ZFB", "ZF3S", "ZF6S"))

Calculate markers

evl.markers.bystage <- aucprTestByFactor(object, cells.1 = evl.cells, cells.2 = list(pgc.cells,
blastoderm.cells), label = "STAGE", groups = groups, log.effect.size = 0.5, auc.factor = 1,
min.auc.thresh = 0.1, max.auc.thresh = Inf, frac.must.express = 0.1, frac.min.diff = 0,
genes.use = genes.use, min.groups.to.mark = 3, report.debug = T)

pgc.markers.bystage <- aucprTestByFactor(object, cells.l = pgc.cells, cells.2 = list(evl.cells,
blastoderm.cells), label = "STAGE", groups = groups, log.effect.size = 0.5, auc.factor = 1,
min.auc.thresh = 0.1, max.auc.thresh = Inf, frac.must.express = 0.1, frac.min.diff = O,
genes.use = genes.use, min.groups.to.mark = 3, report.debug = T)

Save them
saveRDS (evl.markers.bystage, "cascades/aucpr/EVL/Periderm.rds")
saveRDS (pgc .markers.bystage, "cascades/aucpr/Primordial Germ Cells.rds")

Separate actual marker lists from the stats lists

gene .markers.de <- lapply(gene.markers, function(x) x[[1]])
gene.markers.stats <- lapply(gene.markers[1:23], function(x) x[[2]])
names (gene .markers.de) <- names(gene.markers)

names (gene.markers.stats) <- names(gene.markers) [1:23]

Add them PGC and EVL to geme markers DE
gene.markers.de[["Primordial Germ Cells"]] <- pgc.markers.bystage$diff.exp
gene .markers.de[["EVL/Periderm"]] <- evl.markers.bystage$diff.exp

Differential expression should not be biased by library complexity

Since the size of our cells varies with developmental stage, so does the RNA content, and generally the number
of recovered transcripts and detected genes. Since genes could be detected as differentially expressed due
to technical effects where they were detected in higher complexity transcriptomes, but dropped out of more
sparse transcriptomes, we wanted to make sure this was not a problem with our differential expression testing.
Thus, we tracked the average number of transcripts and genes per cell in each of the differential expression
tests performed during construction of the gene expression cascades. We find that, because cell populations
are matched in pseudotime prior to calculating differential expression, they are also largely matched in
number of transcripts and genes detected, so we do not expect this to pose a problem.

Compile all comparison stats into a single table

all.de.stats <- do.call("rbind", gene.markers.stats)

Do a few plots

ggplot(all.de.stats, aes(x = pt.l.mean, y = pt.2.mean)) + geom_point() + theme_bw() +
geom_abline(slope = 1, intercept = 0, col = "red", 1ty = 2) + labs(x = "Mean Pseudotime (Group 1)",
y = "Mean Pseudotime (Group 2)")

7
%
,
.
.
,
A
.
— &
2 *
,
=]
< »2
9] o’
D 04+ z
I ¢ °
= o’
g ¥
= ,
o) L]
»
q ..
.
g ’
,

[
S 034 /

.

.

.
o8
.
.
.
,
.
.
0.21 ’/
.
0.2 0.3 0.4 0.5

Mean Pseudotime (Group 1)

ggplot(all.de.stats, aes(x = genes.l.mean, y = genes.2.mean)) + geom_point() + theme_bw() +
geom_abline(slope = 1, intercept = 0, col = "red", 1ty = 2) + labs(x = "Mean Detected Genes (Group 1)",
y = "Mean Detected Genes (Group 2)")

. ,
,
,
p
A
y
4 L]
//.
, .
—_ Y 7
N oo’
S 20001 . L
3 z
3 e
Q ..'/
123 ’
2 S o
[’
o ’
3 .« :
3 e
2L 1500+ * A
4 7’
a e
p ,
g . .
E ./ L]
o oo
P L]
See 0 L4
1000 '18@;. *
| e
r'd L]
S
,
1000 1500 2000

Mean Detected Genes (Group 1)

ggplot(all.de.stats, aes(x = trans.l.mean, y = trans.2.mean)) + geom_point() + theme_bw() +
geom_abline(slope = 1, intercept = 0, col = "red", 1ty = 2) + labs(x = "Mean Transcripts (Group 1)",
y = "Mean Transcripts (Group 2)")

L]
\d L]
y
. L’
.
P
s e
0. ®
o
P
& 6000 . -
=3 e e
.
S p
%) e 7 ®
o ’
= L] //
& . , .
c ’
g R
.
S 4000+ %
1} /e L] ®
= .’
e o 4 //
.
7 L]
o 0@
.
..0’“ Se °
et
s e
20004, 7
2000 3000 4000 5000 6000 7000

Mean Transcripts (Group 1)

NMF module comparison along tree

We also identified chains of connected NMF modules that were upregulated at branchpoints in the data, and
considered the top 25 genes loaded in the module to also be part of the gene cascade for that trajectory.

Load the NMF data

Load the data
cm <- read.csv("~/Dropbox/Jeff-Yiqun/DE modules/AllModuleByAllCell.csv", row.names = 1)

Load top genes for each module

what.loaded <- load("~/Dropbox/Jeff-Yiqun/DE modules/Module_top_25genes.Robj")
mod.genes.top25 <- top_25genes

what.loaded <- load("~/Dropbox/Jeff-Yiqun/DE modules/module_lineages.Robj")

ml <- all_lineages

rm(list = c("what.loaded", "all_lineages", "top_25genes"))

We evaluated each segment of unbranched modules in the connected module tree.

Create a list of segments of connected modules without branches.
mod.lin.segs <- list(ZF3S_22 = ml1[["3S_22"11[1:5], ZF6S_29 = "6S_29", ZF6S_9 = "6S_9",
ZF3S_23 = c("3S_23", "B_16"), ZFB_24 = "B_24", ZF6S_35 = m1[["6S_35"]1]1[1:3],
ZF6S_14 = c("6S_14", "3S_13"), ZF6S_16 = c("6S_16", "3S_14"), ZFB_13 = c("B_13",
"90_16"), ZF90_26 = "90_26", ZF90_8 = "90_8", ZF75_9 = c("75_9", "60_20"),
ZFS_5 = c("S_5"), ZF50_11 = "50_11", ZF6S_15 = ml1[["6S_15"11[1:4], ZF6S_13 = "6S_13",
ZF6S_34 = "6S_34", ZF3S_12 = c("3s_12", "B_9", "90_13"), ZF75_14 = "75_14", ZF6S_23 = ml[["6S_23"]1]1[1:5],
ZF60_16 = c("60_16", "S_14"), ZF90_5 = "90_5", ZF6S_10 = ml1[["6S_10"]1]1[1:8],
ZF6S_1 = "6S_1", ZF6S_27 = "6S_27", ZF3S_1 = m1[["6S_1"]1][2:8], ZF6S_40 = ml1[["6S_40"]1]1[1:3],
ZF6S_20 = m1[["6S_20"1]1([1:3], ZF90_27 = m1[["90_27"1]1[1:3], ZF90_25 = m1[["6S_20"]1]1[4:6],
ZFS_3 = c("s_3", "50_6"), ZF6S_3 = m1[["6S_3"1]1[1:8], ZF6S_2 = m1[["6S_2"]1]1[1:3],
ZF6S_17 = m1[["6S_17"]]1[1:3], ZF90_1 = c("90_1", "75_1"), ZF6S_18 = "6S_18",
ZF6S_5 = "6S_5", ZF3S_15 = ml1[["6S_5"]11[2:5], ZF60_1 = "60_1", ZF6S_22 = c("6S_22",
"38_19"), ZF6S_7 = c("6S_7", "3S_9"), ZFB_14 = c("B_14", "90_20"), ZF6S_21 = m1[["6S_21"]1]1[1:4],
ZF75_11 = c("75_11", "60_18"), ZFS_1 = "S_1", ZF50_2 = "50_2", ZF6S_26 = m1[["6S_26"]1]1[1:7],
ZF6S_4 = m1[["6S_4"11[1:8], ZF75_22 = m1[["75_22"1]1[1:4], ZF90_28 = m1[["90_28"1]1[1:5])

And then used t-tests along the structure of the URD dendorgram to find modules that were enriched in
particular trajectories.

Create a module matriz that only includes those modules that are in the

segments you just defined.

cm.goodtree <- cm[unlist(mod.lin.segs),]

Do the tests

parameter.

tips.to.run <-
root.to.use <-
nmf .markers <-

23), "82",

for (tipn in 1:length(tips.to.run)) {
tip <- tips.to.run[tipn]
root <- root.to.use[tipn]
if (is.na(root))
root <- NULL

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##
##
##
##
##
#i#
##
##
##

print (paste0(Sys.time(), ":

for everything except the EVL & PGCs, which need a different root

as.character(object@tree$segment .names)
c(rep("81",
list O

NA) # Use different root for PGC & EVL, because they're hooked up outside the blastoderm

Starting ", tip))

markers <- moduleTestAlongTree(object, tips = tip, data = cm.goodtree, genelist = mod.genes.top25,

[1]
[1]
[11
[1]
[1]
[1]
[1]
(11
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[11

pseudotime

root = root, min.expression =
saveRDS(markers, file = pasteO('"cascades/nmf/", tip, ".rds"))
nmf .markers[[tip]] <- markers

"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24
"2018-02-24

21

21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:

:15:
16:
16:
17:
18:
19:
19:
20:
21:
22:
22:
23:
24:
24:
24:
25:
25:
26:
26:
26:
27:
27:

27

27:
28:

15:
02:
50:
36:
22:
05:
4a7:
31:
15:
00:
42:
25:
07:
34:
59:
23:
45:
08:
30:
52:
12:
32:
143:
54:
23:

Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting

"pseudotime", exclude.upstream = T, effect.size = log(4), p.thresh = 0.01,

0.05)

Spinal Cord"

Diencephalon"

Optic Cup"

Midbrain+Neural Crest"
Hindbrain R3"

Hindbrain R4+5+6"
Telencephalon"

Epidermis"

Neural Plate Border"

Placode Adeno.+Lens+Trigeminal"
Placode Epibranchial+0tic"
Placode Olfactory"

Tailbud"

Adaxial Cells"

Somites"

Hematopoeitic (ICM)"
Hematopoeitic (RBI)+Pronephros"
Endoderm Pharyngeal"

Endoderm Pancreatic+Intestinal"
Heart Primordium"

Cephalic Mesoderm"

Prechordal Plate"

Notochord"

Primordial Germ Cells"
EVL/Periderm"

Combine the two sets of markers

We combined genes identified by URD’s differential expression testing and by NMF module loading into a
single set of markers for each trajectory.

Combine the two sets of markers
tips.to.run <- as.character(object@tree$segment.names)
combined.gene.markers <- lapply(tips.to.run, function(tip) {
gm <- rownames (gene.markers.de[[tip]])

nm <- nmf.markers[[tip]l]$genes
return(unique(c(gm, nm)))

b

names (combined.gene.markers) <- tips.to.run

Impulse fits

We then fit the expression of each marker gene in each trajectory using an impulse model to determine
the timing of onset and offset of its expression to order genes in the cascade. Cells in each trajectory are
grouped using a moving window through pseudotime; then, mean gene expression is then calculated in each
window, and scaled to the maximum mean expression observed in the trajectory. Then, a linear model,
single onset sigmoid model, and convex and concave double sigmoid models are fit to the data, and the
best fit is chosen by minimizing the sum of squared residuals, penalized according to the complexity of the
model. The parameters of the chosen model (for instance, the inflection point of a sigmoid) are then used

to calculate genes’ onset time, which is then used to order genes. Importantly, the double sigmoid models
allow for accurate fitting of genes that are expressed in a brief pulse (a convex double sigmoid, or “impulse”),
or that are maternally loaded, decrease over time, and then are re-expressed in particular trajectories (a
concave double sigmoid).

Generate impulse fits
gene.cascades.combined <- lapply(tips.to.run, function(tip) {

print(paste0(Sys.time(), ": Impulse Fit ", tip))

seg.cells <- cellsAlongLineage(object, tip, remove.root = F)

casc <- geneCascadeProcess(object = object, pseudotime = "pseudotime", cells = seg.cells,
genes = combined.gene.markers[[tip]], moving.window = 5, cells.per.window = 18,
limit.single.sigmoid.slopes = "on", verbose = F)

tip.file.name <- gsub("/", "_", tip)

saveRDS(casc, file = pasteO("cascades/impulse/casc_", tip.file.name, ".rds"))

return(casc)

b

names (gene.cascades.combined) <- tips.to.run

[1] "2018-02-24 21:28:51: Impulse Fit Spinal Cord"

[1] "2018-02-24 21:37:46: Impulse Fit Diencephalon"

[1] "2018-02-24 21:42:12: Impulse Fit Optic Cup"

[1] "2018-02-24 21:45:53: Impulse Fit Midbraint+Neural Crest"

[1] "2018-02-24 21:50:03: Impulse Fit Hindbrain R3"

[1] "2018-02-24 21:55:00: Impulse Fit Hindbrain R4+5+6"

[1] "2018-02-24 21:58:10: Impulse Fit Telencephalon"

[1] "2018-02-24 22:03:20: Impulse Fit Epidermis"

[1] "2018-02-24 22:13:14: Impulse Fit Neural Plate Border"

[1] "2018-02-24 22:26:43: Impulse Fit Placode Adeno.+Lens+Trigeminal"
[1] "2018-02-24 22:34:39: Impulse Fit Placode Epibranchial+0tic"

[1] "2018-02-24 22:40:56: Impulse Fit Placode Olfactory"

[1] "2018-02-24 22:51:02: Impulse Fit Tailbud"

[1] "2018-02-24 22:55:21: Impulse Fit Adaxial Cells"

[1] "2018-02-24 22:59:04: Impulse Fit Somites"

[1] "2018-02-24 23:01:32: Impulse Fit Hematopoeitic (ICM)"

[1] "2018-02-24 23:04:38: Impulse Fit Hematopoeitic (RBI)+Pronephros"
[1] "2018-02-24 23:06:01: Impulse Fit Endoderm Pharyngeal"

[1] "2018-02-24 23:08:03: Impulse Fit Endoderm Pancreatic+Intestinal"
[1] "2018-02-24 23:10:45: Impulse Fit Heart Primordium"

[1] "2018-02-24 23:12:11: Impulse Fit Cephalic Mesoderm"

[1] "2018-02-24 23:14:07: Impulse Fit Prechordal Plate"

[1] "2018-02-24 23:16:20: Impulse Fit Notochord"

[1] "2018-02-24 23:18:13: Impulse Fit Primordial Germ Cells"

[1] "2018-02-24 23:18:34: Impulse Fit EVL/Periderm"

Heatmaps

We then plotted each trajectory’s gene cascade in a heatmap. Genes are ordered along the y-axis, according
to our determined time of expression onset. Along the x-axis is the progression of pseudotime. Plotted is the
scaled mean expression within each pseudotime moving window. We determined which genes were recovered
from differential expression testing by URD, or were members of a connected NMF gene module that was
upregulated in a particular trajectory. This is plotted next to the heatmap, colored red for genes exclusively
identified by NMF, blue for genes exclusively identified by URD, and purple for genes identified by both
approaches. (These plots were output to a PDF, but we show an example of one below.)

Generate color bars for NMF ws. URD found markers
urd.nmf .markers <- lapply(tips.to.run, function(tip) {
gm <- rownames (gene.markers.de[[tip]])
nm <- nmf.markers[[tip]l]$genes
return(list(red = setdiff(nm, gm), purple = intersect(nm, gm), dodgerbluel = setdiff (gm,
nm)))
b

names (urd.nmf .markers) <- tips.to.run

Make a heatmap of every cascade in a single PDF.
pdf(file = "cascades/cascades.pdf", width = 7.5, height = 10)
for (tip in tips.to.run) {
geneCascadeHeatmap(cascade = gene.cascades.combined[[tip]], color.scale = RColorBrewer::brewer.pal(9,
"Y10rRd"), add.time = "HPF", times.annotate = c(3.3, 3.8, 4.3, 4.7, 5.3,
6, 7, 8, 9, 10, 11, 12), title = tip, annotation.list = urd.nmf.markers[[tip]])

dev.off ()

quartz_off_screen

2

tip <- "Heart Primordium"

geneCascadeHeatmap(cascade = gene.cascades.combined[[tip]], color.scale = RColorBrewer: :brewer.pal(9,
"Y10rRd"), add.time = "HPF", times.annotate = ¢(3.3, 3.8, 4.3, 4.7, 5.3, 6, 7,
8, 9, 10, 11, 12), title = tip, annotation.list = urd.nmf.markers[[tip]l])

«@
o

38

o
< <

Heart Primordium

SI:DKEY-261J4.5
AIF1L
TTC31

ZNFL2A
TP53INP2
CCND1

HER1
SI:CH211-106E7.2
SEBOX

MESPAB

PCDH8
CABZ01092285.1
GATAS

MESPAA

C

SI:DKEY-261H17.1

CABZ01112575.1
SX3

M

PMP22A

DLX3B
SI:DKEY-73N10.1
PAX8
SI:CH211-199G17.2
HAND2

FT
SI:DKEY-12J5.1
DX4

C
NRADD
MSX1B
APOEB
CX43.4
ACTB1

URD 7: Plotting

library (URD)

library(rgl)

library(gridExtra) # For arranging plots
library(RColorBrewer) # For color palettes

Set up knitr to capture rgl output
rgl: :setupKnitr()

Load previous saved object

object <- readRDS("obj/object_6_tree.rds")

Color Palettes

Define some color palettes to use for figures. Most of these are gentle modifications of RColorBrewer palettes.

Colors to use for stage
stage.colors <- c("#CCCCCC", RColorBrewer::brewer.pal(9, "Set1")[9], RColorBrewer::brewer.pal(12,
"Paired") [c(9, 10, 7, 8, 5, 6, 3, 4, 1, 2)])

Preference colors for the preference plots
pref.colors <- c("#CECECE", "#CBDAC2", RColorBrewer::brewer.pal(9, "Y1GnBu")[3:9])

Red-orange color scheme for gene expression
fire.with.grey <- c("#CECECE", "#DDC998", RColorBrewer::brewer.pal(9, "Y10rRd")[3:9])

Grey-blue-green color scheme for module and gene expression
pond.with.grey <- c("#CECECE", "#CBDAC2", RColorBrewer: :brewer.pal(9, "Y1GnBu")[3:9])

branch.colors <- c("#CECECE", "#E6298B")

plotDim

The plotDim command allows plotting cells according to various dimensionality reductions that have been
performed (such as tSNE, PCA, or the diffusion map.)

tSNE - Stage

plotDim(object, "stage.nice", reduction.use = "tSNE", discrete.colors = stage.colors,
plot.title = "Stage")

Stage

404

201
A-HIGH

® B-OBLONG
@ C-DOME
® D-30
E-50
® FS
@ G-60

tSNE2

® H-75
1-90
® JB
K-38
® L-6S

-204

-401

tSNE - Clustering

plotDim(object, "ZF6S-Cluster", reduction.use = "tSNE", plot.title = "6-somite clusters")

6-somite clusters

40
® Adaxial Cells ® Hindbrain R7 ® Primordial Germ Cells
] © Cephalic Mesoderm ® Integument © Pronephros
® Diencephalon Ventral ® Midbrain © PSM Intermediate
© Dorsal Diencephalon ® Neural Crest © PSM Maturation Zone
® Endoderm Pancreatic/Intestinal ® Neural Crest Forming © PSM Posterior
® Endoderm Pharyngeal ® Neural Plate Border ® PSM Progenitor Zone
N o] ® Epidermis @ Notochord Anterior © Somites Formed
u ® EVL/Periderm @ Notochord Posterior © Somites Forming
2 ® Floor Plate ® Optic Cup ® Spinal Cord
® Heart Primordium ® Placode Adenohypophyseal @ Spinal Cord Differentiated
® Hematopoeitic (ICM) ® Placode Epibranchial © Spinal Cord Progenitors
® Hematopoeitic (RBI) ® Placode Lens ® Tailbud
® Hindbrain ® Placode Olfactory © Telencephalon
209 ® Hindbrain R3 ® Placode Otic ® vysL
® Hindbrain R4 ® Placode Trigeminal ® NA
® Hindbrain R5+6 © Prechordal Plate
404

tSNE - Gene Expression

Individual markers can be plotted with the default blue-to-red color scheme, or a custom palette.
plotDim(object, "PRDX5", reduction.use = "tSNE", plot.title = "PRDX5 (An endoderm marker)")

PRDX5 (An endoderm marker)

404

201

-40 ~ZIO

im(object,
olors = fire.with.grey)

tSNE1

"TAGLN2", reduction.use =

"tSNE", plot.title

TAGLN2 (Pharyngeal Endoderm and Epidermal Marker

40

D of
4
2]
2]
204
-40 4
plotD
(o]
404
204
D of
z
2]
)

2204

404

Pes
3

-40 -ZIO

tSNE1

20

40

"TAGLN2 (Pharyngeal Endoderm and Epidermal Marker",

Two markers can be simultaneously plotted using a red-green color scheme.

plotDimDual (object, label.red = "PRDX5", label.green
plot.title = "PRDX5 (Red) vs. TAGLN2 (Green)", legend.offset.x = 5)

"TAGLN2", reduction.use =

"tSNE",

PRDXS5 (Red) vs. TAGLN2 (Green)

40 4
6.18
494
3an
247
1.24
0
204
o oA
zZ
@
-201
-40 4
-25 0 25
tSNE1

Diffusion Map

Pairs of components from the diffusion map (or PCA, if reduction.use=“pca”) can also be plotted with any
metadata or gene expression.

plotDim(object, reduction.use = "dm", dim.x = 3, dim.y = 4, label = "n.Genes", plot.title = "Number of Genes")

Number of Genes

.
]
]
1
0.05-
I 6000
v .
o .2 4000
l 2000
0.00-

0.00 0.05 0.10 0.15 0.20
DC3

Additionally, pairs of labels can be plotted in a red-green color scheme.

plotDimDual(object, reduction.use = "dm", dim.x = 3, dim.y = 4, label.red = "GSC",
label.green = "ICN")

0.05 1

DC4

0.00 4

T T

T
0.00 0.05 0.10 0.15 0.20
DC3

Furthermore, any plotDim command can be run against many pairs of components using plotDimArray —

all parameters are passed to plotDim, and the x and y dimensions are taken in pairs from the dims.to.plot
vector.

plotDimArray(object, reduction.use = "dm", dims.to.plot = 1:8, label = "NOTO", outer.title = "NOTO expression",

plot.title = "")
NOTO expression
. .
0.000 A M ‘o”
»
. a¢
-0.025 1 . l 6 0.051
o . . <
8 o501 g% . 49
b
<
2
00757p e I 0007 §
0
-0.100-!
00 02 04 06 000 005 010 015 0.20
DC1 DC3
&
Y
051 le
8 ’ 3
Qa -1.04 4 [a)
.
H 2
1.5+
0
_2_0.
0025 0000 0025 0050 010 -0.05 0.00 0.05
DC5 DC7

Tree Dendrogram

URD’s recovered tree dendrogram can also be decorated with any gene expression or metadata.
plotTree(object, "NOTO", title = "NOTO expression")

NOTO expression

swnopnasd

nll)

plotTree (object , "n.Trans", title

20000

I 30000

swijopnasd

plotTree(object, "Louvain-15")

Louvain-15 12 31

13 32
14 - 33
15 34
16 35

[}

£ 17 36

=] 18 37

3

2 19 38

o
2 39
20 4
21 40
2 5
23 6
25 7
26 8
27 9
28

Force-directed Layout

Similarly, the force-directed layout can be decorated with any clustering, gene expression, or metadata.

plotTreeForce(object, "stage.nice", title = "STAGE", title.line = 1, discrete.colors = stage.colors,
alpha = 0.4)

.
pEngfPhar
me’:’anolm

7/

.;‘ /

’/Hem(ICM)
".m(H?Pm »
A /

e ee WO L o % 8 PGCY

plotTreeForce(object, "WNT8A", title = "WNT8A expression", title.line = 1)

WNT8A expression

eas@itd Lo oo 4% ¥ PGCT

fire.with.grey)

=1, colors =

"NOTO expression", title.line

plotTreeForce(object, "NOTO", title

NOTO expression
. o
e
s
NPB ‘\'
’g.- Som
"‘ A‘Env:h:\Phar
% e
. HBR3 % Endo Pan+Int
HB R4-6
PR o ¢ : 4
Waane £ ..
b : & se % o Hem(ICM)
” & e Hem(RBI)+Pro

T wet ARG S i

. gt £

ro S >

e
LY Di =
% “ad N
Epi
EVL
v .
o . v ¥,
s
PGC

cellsAlongLineage(object,

"lineage_Tailbud", cells
"Tailbud", title.line = 1, discrete.colors = branch.colors,

object <- groupFromCells(object, group.id

"Tailbud", remove.root = F))
plotTreeForce(object, "lineage_Tailbud", title

alpha = 0.4)

Tailbud =

adEnde Phar
X

HB R3 Endo Pan+Int

HB R
PRBIpic 18 7

1 4NC
Hem(ICM)
Hem(RBI)+Pro

cM

Di

EVL

Gene Expression

We also include several functions for exploring gene expression within lineages or populations. Here we use
a violin plot and dot plot to illustrate markers of the clusters used as hindbrain tips.

plotViolin(object, labels.plot = c("EGR2B", "FGF8A", "MAFBA"), clustering = "ZF6S-Cluster",
clusters = c("Hindbrain R3", "Hindbrain R4", "Hindbrain R5+6"))

Warning in plotViolin(object, labels.plot = c("EGR2B", "FGF8A", "MAFBA"),
NAs introduced by coercion

EGR2B FGF8A MAFBA

s

Cluster

- . Hindbrain R3
VL Hindbrain R4,
B Hindbrain R5+6

Al i1l

Hindbrain R3 Hindbrain R4 Hindbrain R§+6 Hindbrain R3 Hindbrain R4 Hindbrain R5+6 Hindbrain R3 Hindbrain R4 Hindbrain R5+6
Cluster

plotDot(object, genes = c("EGR2B", "IRX3A", "HOXA2B", "HOXB2A", "MAFBA", "FGF8A",
"HOXA3A", "HOXB3A"), clustering = "ZF6S-Cluster", clusters.use = c("Hindbrain R3",
"Hindbrain R4", "Hindbrain R5+6"))

Expression (log2)
~

Mean
EGR2B- [) . [) l
3
IRX3A - (] []
2
HOXA2B - [} []
1
o HOXB2A- (] . °
[=4
3
O MAFBA-
Prop.Exp
FGF8A - . ® 02
HOXA3A - @ o4
@ os
HOXB3A - . .
08
. . . ®
Hindbrain R3 Hindbrain R4 Hindbrain R5+6
Cluster

Markers of a specific lineage

In the manuscript, we illustrated the expression of the determined markers for a single cascade on the force-
directed layout (Figure S5 shows markers of the prechordal plate). We took all genes that were part of the
prechordal plate gene cascade and applied an additional layer of specificity — we required that they were ~4
times better than a random precision-recall classifier when compared globally between the prechordal plate
cascade and the rest of the embryo. We then determined whether they had already been annotated as having
expression in the prechordal plate (or one of its synonyms) in ZFIN (the Zebrafish Information Network).
Finally, we plotted the expression of each gene, colored according to whether it had been previously annotated
or not.

Load gene cascade

pcp.cascade <- readRDS("cascades/impulse/casc_Prechordal Plate.rds")

pcp.markers <- rownames(pcp.cascade$scaled.expression)

Determine which genes are also global markers

pcp.axial.cells <- cellsInCluster(object, "segment", c("29", "79"))

pcp.markers.global <- markersAUCPR(object, cells.l = pcp.axial.cells, genes.use = pcp.markers)

marker.thresh <- aucprThreshold(cells.l = pcp.axial.cells, cells.2 = setdiff (unlist(object@tree$cells.in.segment),
pcp.axial.cells), factor = 2.5, max.auc = Inf)

pcp.de.markers <- pcp.markers.global [pcp.markers.global$AUCPR >= marker.thresh,]

Who is annotated already in ZFIN? Search terms: anterior azial hypodblast,

prechordal plate, polster, hatching gland

zfin.pcp.markers <- read.csv(file = "data/ZFIN_annotated_Markers.csv", header = F)
new.markers <- setdiff(rownames(pcp.de.markers), toupper(zfin.pcp.markers$vVi))

Still had to hand verify these in ZFIN, since sometimes genes have been renamed

or have a weird but equivalent anatomy term (like 'dorsal marginal

blastomeres')

renamed.in.zfin <- c("HE1A", "HE1B", "LGALS3L", "SHISA2", "CHD", "OTX1A", "OTX1B",
"ATPIF1B", "FBX02")

known.marker <- c("RIPPLY1", "NDR1", "LHX1A", "MIXL1", "ISMi", "FSCN1iA", "CTH1",
"DHRS3B", "SND1") # Genes with semi-random, but equivalent anatomy terms

Final new/old markers list.

new.markers <- setdiff (new.markers, c(renamed.in.zfin, known.marker)) # 49
old.markers <- setdiff(rownames(pcp.de.markers), new.markers) # 71
pcp.markers <- c(new.markers, old.markers) # 120

Order markers according to gene cascade

timing <- pcp.cascade$timing[pcp.markers,]

timing[intersect(which(is.na(timing$time.on)), which(is.infinite(timing$time.off))),
"time.on"] <- Inf

ordered.markers <- pcp.markers[order(timing$time.on, timing$time.off, na.last = F)]

ordered.markers.new <- ordered.markers %inj, new.markers

Save the list of markers for later.
write(ordered.markers, "cascades/pcp_markers_FigS5.txt")

We plot all of the markers to a folder for building the supplemental figure...

Plot each marker, colored based on whether it was annotated in ZFIN previously.
for (i in 1:length(ordered.markers)) {
m <- ordered.markers[i]
if (ordered.markers.new[il])
colors.use <- pond.with.grey else colors.use <- fire.with.grey
plotTreeForce(object, m, alpha = 0.7, alpha.fade = 0.08, size = 10, density.alpha = T,
label.tips = F, colors = colors.use, view = "figurel")
text3d(x = -8, y = 4.2, z = 100, m, cex = 4)
Sys.sleep(0.2)
rgl.snapshot(file = pasteO("cascades/pcp_markers/", sprintf("7034", i), "-",
m, ".png"))
rgl.close()
}

.. but include here a couple of examples of a new marker (pnocb) and a very classic marker of the prechordal
plate (ctsib/hgg1):
plotTreeForce(object, ordered.markers[71], title = ordered.markers[71], alpha = 0.7,

alpha.fade = 0.08, size = 10, density.alpha = T, label.tips = F, colors = pond.with.grey,
view = "figurel")

10

PNOCB

plotTreeForce(object, label = ordered.markers[72], title = ordered.markers([72], alpha = 0.7,
alpha.fade = 0.08, size = 10, density.alpha = T, label.tips = F, colors = fire.with.grey,
view = "figurel")

CTSLB

Preference plot at a branchpoint

In the manuscript, we described that the axial mesoderm branchpoint (between the notochord and prechordal
plate) has cells that expressed genes characteristic of both downstream populations (Figure 6). We illustrated

this using preference plots, colored by gene expression.

Define the preference layout for the branchpoint

First, the preference plot layout is defined. Cells that were visited by random walks started in the two tips
in question are included in the layout. Cells are ordered along the y-axis according to pseudotime. Cells are
placed along the x-axis based on their preference, which is based on their ratio of visits by the random walks

from each tip.

Define layout for plots

np.layout <- branchpointPreferencelLayout(object, pseudotime = "pseudotime", lineages.1l = "29",
lineages.2 = "32", parent.of.lineages = "79", opposite.parent = c("72", "78"),
min.visit = 1)

11

Plot stage on the preference plot

We found that the intermediate cells were prevalent at mid-gastrulation, from 60%-90% epiboly.
plotBranchpoint (object, np.layout, label = "stage.nice", point.alpha = 0.5, populations
ylab = "", legend = T, axis.lines
0, discrete.colors = stage.colors[c(1l, 3:12)], title = "Stage")

0.2

0.4

06

"N"), pt.lim

c(0.7, 0.1), xlab = "",

visited
-1
o2
°3
.4

expression
AHIGH
C-DOME

* D-30
E-50

. Fs
G-60

® H-75
1-90

. uB
K38

L-6S

Plot gene expression on the branchpoint.

We found that the intermediate cells no longer expressed progenitor markers (nanog, mex3b), expressed early
markers of both cell types (ta, noto, gsc, and frzb), and expressed late markers of the notochord (ntd5 and
shha), but did not express late markers of the prechordal plate (prdm1ia, icn). By the time that differentiation
genes (col8ala and hela) were expressed, there were no longer intermediate cells between the two trajectories.

Define genes to plot
axial.genes.plot <- c("NANOG", "TA",
"PRDM1A", "ICN", "HE1A")

"NOTO", "NTD5", "SHHA", "COL8A1A", "MEX3B",

Plot gene expression on the branchpoint preference plot

axial.branchpoint.plots <- lapply(axial.genes.plot, function(gene) plotBranchpoint(object,
np.layout, label = gene, point.alpha
0.11), color.scale = pref.colors, xlab =
axis.lines = F, fade.low = 0.66))

grid.arrange(grobs

0.2

0.44

0.6

0.24
044

0.6

1, populations = c("P", "N"), pt.lim
"", ylab = "", title = gene, legend = F,

axial.branchpoint.plots, ncol = 6)

c(0.7,

0.2

0.44

0.6

12

NOTO NTD5 COL8A1A
0.2 0.2 0.2
/q®e 05y
0.4{9° ’-'.' e e 0.4 0.4
R
0.6 0.6 0.6 I
H o
N P N N
GSC FRZB PRDM1A HE1A
%
! 0.2 0.2 0.2 0.2
E S P
. s OA-‘f o, ’ 0.4 0.4 0.4
L] 1 8
0.6 0.6 © 0.6 0.6
P N P N N

URD: Choosing Parameters - Diffusion Map Sigma

library (URD)

Load previous saved object

object <- readRDS("obj/object_2_trimmed.rds")

Calculate diffusion maps

In the presented analysis, we used a diffusion map with sigma 8. Here, we calculated several diffusion maps
on the same data with varying sigmas (5, 7, 8, 9, and 13) to demonstrate how we chose an appropriate sigma.

The transition probabilities between cells is their Euclidean distance in gene expression space (calculated on
the highly variable genes), then transformed by a Gaussian function to prioritize transitions between cells
that are very close. The sigma parameters is the standard deviation of the Gaussian used to transform the
distances. A smaller sigma requires cells to be closer to each other in transcriptional space in order to be
connected in the tree. An overly small sigma, however, will create disconnections, where all connections to
some cells will become 0.

Load calculated diffusion maps

dm.5 <- readRDS("dm/dm-5-2.0.6ep.rds")

dm.7 <- readRDS("dm/dm-7-2.0.6ep.rds")

dm.8 <- readRDS("dm/dm-8-2.0.6ep.rds")

dm.9 <- readRDS("dm/dm-9-2.0.6ep.rds")

dm.13 <- readRDS("dm/dm-13-2.0.6ep.rds")

Add them to URD objects

object.dmb <- importDM(object, dm.5)
object.dm7 <- importDM(object, dm.7)
object.dm8 <- importDM(object, dm.8)
object.dm9 <- importDM(object, dm.9)
object.dm13 <- importDM(object, dm.13)

Clean up RAM.
rm(list = c¢("dm.5", "dm.7", "dm.8", "dm.9", "dm.13", "object"))
shhh <- gc()

Inspect diffusion maps

Choosing the correct sigma for the diffusion map and transition probabilities is critical. In general, we find
it best to choose the smallest sigma possible that doesn’t cause many disconnections in the data.
Stage color palette
stage.colors <- c("#CCCCCC", RColorBrewer::brewer.pal(9, "Set1")[9], RColorBrewer::brewer.pal(12,
"Paired") [c(9, 10, 7, 8, 5, 6, 3, 4, 1, 2)1)

plotDimArray(object = object.dmb, reduction.use = "dm", dims.to.plot = 1:18, label = "stage.nice",

plot.title = , outer.title = "Sigma 5", discrete.colors = stage.colors)

0.6

0.4+

DC2

0.2+

0.09 &

A-HIGH
B-OBLONG

C-DOME
+ D-30
E-50
F-S
G-60
* H-75
1-90

| - JB
I K-3S

60 40 20
DC1

L-6S

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S
G-60

+ H-75
1-90

- JB
K-38

L-6S

DC14
3

A-HIGH

+ D-30
E-50
F-S
G-60

+ H-75
1-90

- JB
K-38

1000
DC13

-2000

plotDimArray(object

plot.title = "",

- B-OBLONG
C-DOME
1
|
{
1
H
i
0

* L-6S

= object.dm7, reduction.use =
"Sigma 7", discrete.colors

outer.title =

Sigma 5

4001

3001

DC4

2004

100 4

S

v v v . v
20 15 -10 5 0
DC3

204

DC10

-104

204

150 4

100 4

DC16

0 0 10 20

"dm", dims.to.plot =

A-HIGH
B-OBLONG
C-DOME

- D30 101
E-50
F-s
G-60

- HT5
1-90 304

- JB
K-38

© L-6S

02
DC5

-0.1 0.0 0.1 0.

A-HIGH
B-OBLONG
C-DOME
+ D-30
£-50 -500 4

F-s

DC12

G-60
. HT5 -1000 4
1-90

- JB

g
K-38 1500,

-10.0

<75 -5.0

. 25 00
DC11

A-HIGH
B-OBLONG 2000

C-DOME
+ D30 1500
E-50

F-s

DC18

1000 4
G-60

+ H-75
1-90 500 4
- JB

K-38

+ L-6S

stage.colors)

1:18, label = "stage.nice",

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

0.124

0.08 A

DC2

0.04 1

0.004

LN

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S

G-60
* H-75

1-90
© JB

K-38

15
DC1

L-6S

0.0 4

-0.24

DC8

0.4

-0.6

-0.8 4

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S
G-60

+ H-75
1-90

© JB

N K-38

00 0.1
DC7

0.2 . Les

0.104

0.05 4

DC14

0.004

-0.054

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S
G-60

+ H-75
1-90

- JB
K-38

010 -005
DC13

015

plotDimArray(object =
plot.title = "",

000 005 - L-6S

outer.title =

DC4

DC10

DC16

0.04 4

0.004

-0.04 4

-0.08

-0.6

Sigma 7

0.1+

0.0 4

-0.1+

object.dm8, reduction.use =
"Sigma 8", discrete.colors

0.1 00 0
DC15

"dm", dims.to.plot =

A-HIGH
B-OBLONG
C-DOME

D-30
E-50
F-S

G-60

H-75
1-90
© JB
K-38

L-6S

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S
G-60

+ H-75
1-90

© JB
K-38

+ L-6S

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S
G-60

+ H-75
1-90

- JB
K-38

+ L-6S

DC6

DC12

DC18

04

64

T T T T T
-0.050 -0.025 0.000 0.025 0.050

DC5

0.4 4

0.2+

0.0

-0.24

stage.colors)

-0 00 01
DC17

1:18, label = "stage.nice",

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

0.0009 ¥

-0.0254 §*

C2

A -0.050

-0.0754

-0.100 1

0.0

0.2 0.4

DC1

0.6

0.2

0.1+

DC8

0.0

0.00

0.0;

0.10
0051

0.004

DC14

-0.054

-0.104

004

0.00
DC13

0.04

plotDimArray(object =
plot.title = "",

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

DC4

DC10

DC16

Sigma 8

0.054

0.004

0.050 4

0.025

0.000 4

-0.025

-0.050 4

-0.0754

-0.050-0.025 0.000 0.025 0.050 0.075

DC9

0.104

0.05

0.00

-0.054

0.1

object.dm9, reduction.use =

outer.title =

00 o1
DC15

"dm", dims.to.plot =
"Sigma 9", discrete.colors =

0.2

A-HIGH
B-OBLONG
C-DOME

D-30
E-50
F-S

G-60

H-75
1-90
© JB
K-38

L-6S

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S
G-60

+ H-75
1-90

© JB
K-38

+ L-6S

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S
G-60

+ H-75
1-90

- JB
K-38

+ L-6S

DC6

DC12

DC18

0.0 1

-0.5

-1.01

-1.5

-2.04

N T
0.000 0.025

DC5

T
-0.025

N
0.050

0.04 4

0.00 4

-0.04 4

-0.08 1

-0.025 0.000 0.025 0.050
DC11

0.034

0.004

-0.03 4

-0.06 1

stage.colors)

0.00 0.05

DC17

005

1:18, label = "stage.nice",

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

0.004

-0.04 4

DC2

-0.08 1

- ee ey

23

3

=
5]

0.1 0.2
DC1

0.3

0.075

0.050 1

0.025 4

DC8

0.000 4

-0.025 1

0.04 1

0.024

DC14

0.004

-0.024

-0.04 4

plotDimArray(object =
plot.title = "",

-0.050 -0.025 0.000 0.025 0.050
DC13

outer.title =

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

DC4

DC10

DC16

object.dml3, reduction.use =
"Sigma 13", discrete.colors

Sigma 9

0104 5
%
0051 *
0.00+
0.00 0.05 0.10
DC3
0.050
0,025
0.000 W= - ol
-0.025 1
100 -075 -050 -025 0.00
DC9
i
061 3
§
t
]
041
.
024 .-
i
0.0 cxmsmemeen e—————————
010 005 000 005 010
DC15

"dm", dims.to.

A-HIGH
B-OBLONG
C-DOME

D-30
E-50
F-S

G-60

H-75
1-90
© JB
K-38

L-6S

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S
G-60

+ H-75
1-90

© JB
K-38

+ L-6S

A-HIGH
B-OBLONG
C-DOME

+ D-30
E-50
F-S
G-60

+ H-75
1-90

- JB
K-38

+ L-6S

plot =

DC6

DC12

DC18

0.05

0.004

-0.054

-0.104

0.06 1

0.034

0.00 4

-0.03 4

-0.06 4

004 002 000
DC11

0.02 0.0

0.05

0.004

-0.054

-0.104

stage.colors)

0.00
DC17

004

0.04

1:18, label = "stage.nice",

4

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

A-HIGH
B-OBLONG
C-DOME
D-30
E-50

F-S
G-60
H-75
1-90

J-B

K-38
L-6S

Sigma 13

0454 A-HIGH A-HIGH A-HIGH
;;.\‘ - B-OBLONG - B-OBLONG 0104 - B-OBLONG
KA 05
o C-DOME 0 C-DOME C-DOME
0104 A . D30 . D30 - D30
‘ E-50 0.00 E-50 0051 E-50
I . © P .
S 0.054 - FS 3 - FS 8 e - FS
[a) [a) [a) i
G-60 0,054 G-60 0.004 G-60
- HT5 - HT5 - HT5
0001
1-90 1-90 1-90
0104]
y - JB - JB 0.05 - JB
0057 & K-38 K-38 K-38
- . : . — s — . . .
015 010 -005 000 . Les 015 010 -005 000 005 . 6§ 00 0.1 02 . L6S
DC1 DC3 DC5
A-HIGH A-HIGH A-HIGH
0154 i
3‘ - B-OBLONG - B-OBLONG - B-OBLONG
2 C-DOME C-DOME C-DOME
0.10 -+ D-30 -+ D-30 014 . -+ D-30
E-50 E-50 E-50
© o o~
O 0.05 - Fs o © F8 5 02+ . - F-S
a g QY .
G-60 G-60 . G-60
. He . H- 0.3 s . H-
0004 H-75 H-75 k H-75
1-90 1-90 P 1-90
-0.4+4 o
JB - JB (x - JB
-0.054 K-3S K-3S 054 i K-38
005 000 005 0.0 L6 010 005 000 005 . Les 010 005 000 005 010 . LS
DC7 DC9 DC11
A-HIGH A-HIGH A-HIGH
L1
- B-OBLONG 0.101 - B-OBLONG o1 b, - B-OBLONG
C-DOME C-DOME C-DOME
. D- 0054 . D- . D-
00 D-30 D-30 004 D-30
E-50 E-50 E-50
< © ©
b R e R x e
5 { F-s O 000+ F-s O 014 Fs
= G-60 = G-60 = . G-60
i © H75 - HT5 H - HT5
01 | -0.05- 0.2 i
1-90 1-90 i 1-90
- JB o - JB 034 | - JB
K-3S - K-3S K-3S
01 00 01 02 03 . Les 0.1 0.0 0.1 . Les 2010 -005 000 005 0.10 . Les
DC13 DC15 DC17

In this case, we would choose sigma 8 as our preferred resolution, although sigmas 7 or 9 would also potentially
work. Sigma 5 is too small and has many components that are essentially linear, while sigma 13 is too broad.

If you have DCs that define singleton cells, it means that outliers remain, and you should adjust the param-
eters of the outlier removal step prior to calculating the diffusion map (see Part 2).

Pseudotime

We used each of the above diffusion maps to determine pseudotime in our data, and compared them to the
pseudotime defined by the diffusion map with sigma 8 that we used in our analysis.
Load floods

floods.dmb <- lapply(list.files(path = "floods/", pattern = "flood-dm-5", full.names = T),
readRDS)

floods.dm7 <- lapply(list.files(path = "floods/", pattern = "flood-dm-7", full.names = T),
readRDS)

floods.dm8 <- lapply(list.files(path = "floods/", pattern = "flood-dm-8", full.names = T),
readRDS)

floods.dm9 <- lapply(list.files(path = "floods/", pattern = "flood-dm-9", full.names = T),
readRDS)

floods.dm13 <- lapply(list.files(path = "floods/", pattern = "flood-dm-13", full.names = T),
readRDS)

Process the floods

object.dmb <- floodPseudotimeProcess(object.dm5, floods.dmb, floods.name =
max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

object.dm7 <- floodPseudotimeProcess(object.dm7, floods.dm7, floods.name =

"pseudotime",

"pseudotime",

max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

object.dm8 <- floodPseudotimeProcess(object.dm8, floods.dm8, floods.name = "pseudotime",
max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

object.dm9 <- floodPseudotimeProcess(object.dm9, floods.dm9, floods.name = "pseudotime",
max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

object.dm13 <- floodPseudotimeProcess(object.dm13, floods.dm13, floods.name = "pseudotime",
max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

pseudotime.compare <- data.frame(pseudotime.5 = object.dmb@pseudotime$pseudotime,
pseudotime.7 = object.dm7@pseudotime$pseudotime, pseudotime.8 = object.dm8@pseudotime$pseudotime,
pseudotime.9 = object.dm9@pseudotime$pseudotime, pseudotime.13 = object.dm13@pseudotime$pseudotime,
row.names = rownames(object.dm8@pseudotime))

pseudotime.compare$STAGE <- apply(object.dm8@meta[rownames (pseudotime.compare), c("HPF",
"STAGE")], 1, pasteO, collapse = "-")

Pseudotime by stage

We first looked at the pseudotime distribution of each developmental stage. For sigma 5, the pseudotime
calculation failed — only 5 cells in the data are assigned pseudotimes, because the graph is too poorly
connected for the pseudotime simulations to visit most cells reliably. For sigmas 7-9, different developmental
stages have distinct, but overlapping distributions of pseudotime. Sigma 7 is potentially slightly too small,
as 30% and 50% epiboly stages occur in the wrong order. For an overly large sigmas (e.g. 13), most of the
later stages collapse atop each other. We preferred sigma 8 to sigma 9 because 9 begins to show the collapse
of the later stage distributions (at least compared to 8).

Omit high stage -- they are all ezactly 0 (since they were defined as the

root), and it messes with the density distribution algorithm!

pseudotime.compare.nohigh <- pseudotime.compare[grep("ZFHIGH", rownames(pseudotime.compare),
value = T, invert = T),]

ggplot (pseudotime.compare.nohigh, aes(x = pseudotime.7, color = STAGE, fill = STAGE)) +

geom_density(alpha = 0.4) + theme_bw() + labs(x = "Pseudotime (Sigma 7)", y = "",
f£ill = "HPF-STAGE", color = "HPF-STAGE", title = "Pseudotime By Stage (DM Sigma 7)")

Pseudotime By Stage (DM Sigma 7) HPF-STAGE
3.8-ZFOBLONG
4.3-ZFDOME
4.7-ZF30
5.3-ZF50
6.0-ZFS
7.0-ZF60
8.0-ZF75
9.0-ZF90
10.0-ZFB

11.0-ZF3S

0.0 0.2 o4 0.6 12.0-ZF6S
Pseudotime (Sigma 7)

10 4

ggplot (pseudotime.compare.nohigh, aes(x = pseudotime.8, color = STAGE, fill = STAGE)) +
geom_density(alpha = 0.4) + theme_bw() + labs(x = "Pseudotime (Sigma 8)", y = "",
fill = "HPF-STAGE", color = "HPF-STAGE", title = "Pseudotime By Stage (DM Sigma 8)")

Pseudotime By Stage (DM Sigma 8) HPF-STAGE

15 .| 3.8-ZFOBLONG
: 4.3-ZFDOME
: 4.7-ZF30
10 - : 5.3-ZF50
| |eozrs
: 7.0-ZF60
S : 8.0-ZF75
: 9.0-ZF90
: 10.0-ZFB
09 ! ! ! : 11.0-ZF3s
0.0 0.2 04 0.6 B > 0.7F6s
Pseudotime (Sigma 8)
ggplot (pseudotime.compare.nohigh, aes(x = pseudotime.9, color = STAGE, fill = STAGE)) +
geom_density(alpha = 0.4) + theme_bw() + labs(x = "Pseudotime (Sigma 9)", y = "",
£ill = "HPF-STAGE", color = "HPF-STAGE", title = "Pseudotime By Stage (DM Sigma 9)")
Pseudotime By Stage (DM Sigma 9) HPF-STAGE
| 3.8-ZFOBLONG
15 - : 4.3-ZFDOME
: 4.7-ZF30
| 5.3-zF50
107 i 6.0-ZFS
: 7.0-ZF60
5 : 8.0-ZF75
: 9.0-ZF90
: 10.0-ZFB
01 ' ! ! : 11.0-ZF3s
0.2 0.4 0.6 - .

Pseudotime (Sigma 9)

ggplot (pseudotime.compare.nohigh, aes(x = pseudotime.13, color = STAGE, fill = STAGE)) +
= nn
s

geom_density(alpha = 0.4) + theme_bw() + labs(x = "Pseudotime (Sigma 13)", y =
f£ill = "HPF-STAGE", color = "HPF-STAGE", title = "Pseudotime By Stage (DM Sigma 13)")

Pseudotime By Stage (DM Sigma 13)

30

20 A

10 4

0 o

0.2 0.4 0.6
Pseudotime (Sigma 13)

Compare determined pseudotimes

We next compared the pseudotime assignment of each cell between diffusion maps with different sigma. For
sigmas that are similar to each other and to our chosen diffusion map (i.e. 7 and 9), the calculated pseudotimes
are reasonably similar: nearly a linear transformation. For sigmas more distant from the optimal one (e.g.
13), can see that the overly connected diffusion map results in a pseudotime plateau. This mirrors the results

we saw in the above plots of pseudotime by stage.

1m.8.7 <- lm(pseudotime.7 ~ pseudotime.8, data = pseudotime.compare)
r2.8.7 <- round(summary(lm.8.7)$r.squared, 2)

ggplot (pseudotime.compare, aes(x = pseudotime.8, y = pseudotime.7)) + geom_point(alpha
geom_smooth(method = "Im", 1ty = 2) + theme_bw() + labs(x = "Pseudotime (Sigma 8)",
y = "Pseudotime (Sigma 7)", title = pasteO("Diffusion Map: Sigma 8 vs. Sigma 7 (r2

r2.8.7, ")"))

Diffusion Map: Sigma 8 vs. Sigma 7 (r2 = 0.89)

0.6

o
ES
L

Pseudotime (Sigma 7)

o
)
'

0.0

0.0 0.2 0.4 0.6
Pseudotime (Sigma 8)

1m.8.9 <- lm(pseudotime.9 ~ pseudotime.8, data = pseudotime.compare)
r2.8.9 <- round(summary(lm.8.9)$r.squared, 2)

HPF-STAGE

3.8-ZFOBLONG
4.3-ZFDOME
4.7-ZF30
5.3-ZF50
6.0-ZFS
7.0-ZF60
8.0-ZF75
9.0-ZF90
10.0-ZFB
11.0-ZF3S
12.0-ZF6S

0.05) +

ggplot (pseudotime.compare, aes(x = pseudotime.8, y = pseudotime.9)) + geom_point(alpha = 0.05) +

geom_smooth(method = "Im", 1ty = 2) + theme_bw() + labs(x = "Pseudotime (Sigma 8)",

y = "Pseudotime (Sigma 9)", title = paste0("Diffusion Map: Sigma 8 vs. Sigma 9 (r2
r2.8.9, ")"))

Diffusion Map: Sigma 8 vs. Sigma 9 (r2 = 0.95)

0.81

0.6

0.4+

Pseudotime (Sigma 9)

0.24

0.0+

0.0 0.2 04 0.6
Pseudotime (Sigma 8)

1m.8.13 <- 1lm(pseudotime.13 ~ pseudotime.8, data = pseudotime.compare)
r2.8.13 <- round(summary(lm.8.13)$r.squared, 2)
ggplot (pseudotime.compare, aes(x = pseudotime.8, y = pseudotime.13)) + geom_point(alpha = 0.05) +
geom_smooth(method = "Im", 1ty = 2) + theme_bw() + labs(x = "Pseudotime (Sigma 8)",
y = "Pseudotime (Sigma 9)", title = paste0("Diffusion Map: Sigma 8 vs. Sigma 13 (r2 = ",
r2.8.13, ")"))

Diffusion Map: Sigma 8 vs. Sigma 13 (r2 = 0.8)

0.84
0.6
>
©
£
2
2
(] 4
£ 0.4
=
(o]
T°
=
(]
7]
o
0.24
d
004 e
0.0 0.2 0.4 0.6

Pseudotime (Sigma 8)

10

URD: Choosing Parameters - Biased Random Walk

library (URD)
library(gridExtra) # grid.arrange
rgl: :setupKnitr()

Color schemes
fire.with.grey <- c("#CECECE", "#DDC998", RColorBrewer::brewer.pal(9, "Y10rRd")[3:9])
pond.with.grey <- c("#CECECE", "#CBDAC2", RColorBrewer::brewer.pal(9, "Y1GnBu")[3:91)

Load previous saved object

object <- readRDS("obj/object_4_withTips.rds")

Modifying Random Walk Bias

Diffusion logistic settings

In order to perform the biased walks that determine the trajectories from each tip to the root, the transition
probabilities must be biased, such that transitions to cells with younger pseudotime (i.e. closer to the root) are
favored. We bias the random walks using a logistic function that provides a smooth curve that approaches
0 (totally prohibited) and 1 (probability unaltered). The parameters of the logistic are set in terms of
a number of cells forward in pseudotime (across the entire dataset) and a number of cells backward in
pseudotime (across the entire dataset) where the logistic approaches 1 and 0 respectively.

This parameter must be determined for each data set, as it is dependent on the number of cells present in
the data set and likely the number of branches present. However, as we show below, the parameter is quite
robust, and even extreme variations result in relatively small changes in the structure of the zebrafish tree.

par (mfrow = c(2, 3))
par(mar = c(5, 4, 5, 2))

diffusion.logistic <- pseudotimeDeterminelogistic(object, "pseudotime", optimal.cells.forward = 40,
max.cells.back = 80, pseudotime.direction = "<", do.plot = T, print.values = F)
title("Used in the tree\nYounger 40 cells, Older 80 cells")

diffusion.logistic <- pseudotimeDetermineLogistic(object, "pseudotime", optimal.cells.forward = 50,
max.cells.back = 80, pseudotime.direction = "<", do.plot = T, print.values = F)
title("Slight shift younger\nYounger 50 cells, Older 80 cells")

diffusion.logistic <- pseudotimeDeterminelLogistic(object, "pseudotime", optimal.cells.forward = 40,
max.cells.back = 100, pseudotime.direction = "<", do.plot = T, print.values = F)
title("Slight shift older\nYounger 40 cells, Older 100 cells")

diffusion.logistic <- pseudotimeDetermineLogistic(object, "pseudotime", optimal.cells.forward = 40,
max.cells.back = 400, pseudotime.direction = "<", do.plot = T, print.values = F)
title("Weakly biased\nYounger 40 cells, Older 400 cells")

diffusion.logistic <- pseudotimeDeterminelLogistic(object, "pseudotime", optimal.cells.forward = 40,
max.cells.back = 1000, pseudotime.direction = "<", do.plot = T, print.values = F)
title("Very weakly biased\nYounger 40 cells, Older 1000 cells")

diffusion.logistic <- pseudotimeDeterminelLogistic(object, "pseudotime", optimal.cells.forward = 40,
max.cells.back = 0, pseudotime.direction = "<", do.plot = T, print.values = F)
title("Only younger allowed\nYounger 40 cells, Older O cells")

Used in the tree
Younger 40 cells, Older 80 cells

Slight shift younger
Younger 50 cells, Older 80 cells

Slight shift older

Younger 40 cells, Older 100 cells

< ' < : < i
® - I \ | ® - I \ 1 ® - 1 \ |
3 « | ! 3 I 3 « | ! ! 3 « | ! b !
E o | ° | E o I % 1 E o 1 s |
AP P.l R AP
L o | A L o | L o | .
g o I [} I g o I 2 | g o | . I
S <] . | S < | ° l g < 1 A |
5 oS ! . ! 5 o 7 ! K ! 5 o 7 ! “ !
© | '. | © I . | ©] .‘ |
2 o | [} [g o 1 % ! 2 o | . 1
s S | | s S I % [S S 1 |
(] | I () I I (&) I |
o] \',_] \;_ o] \',_
e — T T e T T T e — T T T
-0.001 0.000 0.001 0.002 -0.001 0.000 0.001 0.002 -0.001 0.000 0.001 0.002 0.003
Delta pseudotime Delta pseudotime Delta pseudotime
Weakly biased Very weakly biased Only younger allowed
Younger 40 cells, Older 400 cells Younger 40 cells, Older 1000 cells Younger 40 cells, Older 0 cells
S - | 2 A 'F\ I 2
® | 1 ® I I ® I
g ol \. . g o1l % | g o Y
E o | . 1 E © 1 . l E © 1 E
ER I S R I 3, 3
2 " 2 2
§ s o A | § s 7 3 | § o 7 | E
o | . I 1} | . | o ! .
(S . o« . S« .
5 o ! . ! 5 o 7! . ! 5 S] ! .
b4 1 < | b4 1 [| P4 ! .
o . o o °
5o ! 5o W 5 oA | 3
o | 1 o l | o I
o ! . o]! . o ! \\\~
e : T T T T T T e . T T T T T S T T T T T
0.000 0.004 0.008 0.012 0.000 0.005 0.010 0.015 0.020 0.025 -0.0014 -0.0010 -0.0006 -0.0002
Delta pseudotime Delta pseudotime Delta pseudotime
object.40.0 <- object
object.40.00diff.data <- readRDS("alt/diff.data/diffdata-dm-8-tm-40-0.rds")
object.40.0@pseudotime <- readRDS("alt/diff.data/pseudotime-dm-8-tm-40-0.rds")
object.40.0@tree <- readRDS("alt/tree/tree-dm-8-tm-40-0.rds")
object.40.100 <- object
object.40.100@diff.data <- readRDS("alt/diff.data/diffdata-dm-8-tm-40-100.rds")
object.40.100@pseudotime <- readRDS("alt/diff.data/pseudotime-dm-8-tm-40-100.rds")
object.40.100@tree <- readRDS("alt/tree/tree-dm-8-tm-40-100.rds")

Fized a layout bug since running on the cluster so need to redo last steps
of layout.

object.40.100 <- treelLayoutElaborate(object.40.100)
object.40.100 <- treeLayoutCells(object.40.100, pseudotime = "pseudotime")
40.
40.
40.
40.

object.
object.
object.
object.

400 <- object

400@diff.data <- readRDS("alt/diff.data/diffdata-dm-8-tm-40-400.rds")
400@pseudotime <- readRDS("alt/diff.data/pseudotime-dm-8-tm-40-400.rds")
400@tree <- readRDS("alt/tree/tree-dm-8-tm-40-400.rds")

object.
object.
object.
object.

40.1000 <- object

40.1000@diff.data <- readRDS("alt/diff.data/diffdata-dm-8-tm-40-1000.rds")
40.1000@pseudotime <- readRDS("alt/diff.data/pseudotime-dm-8-tm-40-1000.rds")
40.1000@tree <- readRDS("alt/tree/tree-dm-8-tm-40-1000.rds")

50.
50.
50.
50.

object.
object.
object.
object.

80 <- object

80@diff.data <- readRDS("alt/diff.data/diffdata-dm-8-tm-50-80.rds")
80@pseudotime <- readRDS("alt/diff.data/pseudotime-dm-8-tm-50-80.rds")
80@tree <- readRDS("alt/tree/tree-dm-8-tm-50-80.rds")

Fized a layout bug since running on the cluster so need to redo last steps
of layout.

object.50.80 <- treeLayoutElaborate(object.50.80)
object.50.80 <- treeLayoutCells(object.50.80, pseudotime = "pseudotime'")
object.dm7 <- object

object.dm7@diff.data <- readRDS("alt/diff.data/diffdata-dm-7-tm-40-80.rds")

object.dm7@pseudotime <- readRDS("alt/diff.data/pseudotime-dm-7-tm-40-80.rds")
object.dm7@tree <- readRDS("alt/tree/tree-dm-7-tm-40-80.rds")

object.dm9 <- object

object.dm9@diff.data <- readRDS("alt/diff.data/diffdata-dm-9-tm-40-80.rds")
object.dm9@pseudotime <- readRDS("alt/diff.data/pseudotime-dm-9-tm-40-80.rds")
object.dm9@tree <- readRDS("alt/tree/tree-dm-9-tm-40-80.rds")

Comparing visitation frequencies

We compared the visitation structure at the axial mesoderm branchpoint given different biased random
walk settings (including no bias at all). We plotted both the segment assignment, as well as the visitation
frequency of cells from the notochord and prechordal plate tips. Cell arrangement is based on the position
of cells in 3 components of the diffusion map. These plots are cropped to cells that were part of the early
blastoderm or the axial mesoderm lineage, and include cells that are general early blastoderm progenitors,
the axial mesoderm progenitors, or the notochord or prechordal plate progenitors. While it is clear that
biasing the random walks is important (as the unbiased random walks lead to visitation of both populations
from either tip), the particular settings of the bias make only small changes to the visitation frequency near
the branchpoint and the final placement of the branchpoint assignment.
Incorporate unbiased walks from tip 29 = PCP Load unbiased walks
unbiased.walks.29 <- unlist(lapply(list.files(path = "walks/dm-8-unbiased/",
pattern = "-29-", full.names = T), readRDS), recursive = F)
How many actually completed? 75) completed, ~35k successful Load them
into the object
object.unbiased <- processRandomWalks(object, walks = unbiased.walks.29, walks.name = "29.unbiased",
n.subsample = 1, verbose = F)
Clear up RAM because the unbiased walks lists are BIG.
rm(unbiased.walks.29)
shhh <- gc(verbose = F)

Repeat for unbiased walks from tip 32 = Notochord

unbiased.walks.32 <- unlist(lapply(list.files(path = "walks/dm-8-unbiased/",
pattern = "-32-", full.names = T), readRDS), recursive = F)

775) completed, ~35k successful

object.unbiased <- processRandomWalks(object.unbiased, walks = unbiased.walks.32,

walks.name = "32.unbiased", n.subsample = 1, verbose = F)
rm(unbiased.walks.32)
shhh <- gc()

Move diffusion map to unbiased walk object
object.unbiased@dm <- object@dm

object <- readRDS("obj/object_5_withWalks.rds")
object.tree <- readRDS("obj/object_6_tree.rds")

color.lim <- range(unlist(c(object@diff.datal, c("visitfreq.log.29", "visitfreq.log.32")],
object.unbiased@diff.datal, c("visitfreq.log.29.unbiased", "visitfreq.log.32.unbiased")],
object.40.0@diff.datal, c("visitfreq.log.29", "visitfreq.log.32")], object.40.10000diff.datal,
c("visitfreq.log.29", "visitfreq.log.32")]1)))

cells.to.3d.plot <- cellsInCluster(object.tree, "segment", c("81", "79", "29",
ll32ll))

Load plotDim3D orientation into your objects

object@plot.3d <- readRDS("obj/object_6_tree_axialmesoplot3d.rds")
object.tree@plot.3d <- readRDS("obj/object_6_tree_axialmesoplot3d.rds")
object.unbiased@plot.3d <- readRDS("obj/object_6_tree_axialmesoplot3d.rds")
object.40.0@plot.3d <- readRDS("obj/object_6_tree_axialmesoplot3d.rds")
object.40.1000@plot.3d <- readRDS("obj/object_6_tree_axialmesoplot3d.rds")

Recreate 'segment' group identity for 3D plots later

object.40.00@group.ids$segment <- "99"

for (segment in c("29", "32", "79", "81")) {
object.40.00group.ids[object.40.00@tree$cells.in.segment [[segment]], "segment"] <- segment

}

object.40.1000@group.ids$segment <- "99"

for (segment in c("29", "32", "79", "81")) {
object.40.1000@group.ids [object.40.1000@tree$cells. in.segment [[segment]],

"segment"] <- segment

Segment assignment

Here, the segment assignment is plotted for three biased random walk conditions. These plots reveal that
there are very slight changes in the placement of the notochord-prechordal plate branchpoint depending on
the random walk parameters — when more lateral and backward movement is allowed (such as in 40F /1000B),
the axial mesoderm common progenitor segment persists slightly later before splitting into the notochord
and prechordal plate, and the converse occurs when less lateral or backward movement is allowed (such as in
40F /0B). Colors: blue (early blastoderm progenitors), red (axial mesoderm progenitors), green (prechordal
plate progenitors), yellow (notochord progenitors).
plotDim3D(object.tree, view = "axialmeso", label = "segment", cells = cells.to.3d.plot,

bounding.box = F, discrete.colors = c("#FFE354", "#93EC93", "#FF0000", "#8CDOF5"),

size = 6, alpha = 0.4, title = "Segment identities: 40F/80B", title.line = -35)
rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)

o e .

Segment identities: 40F/80B

plotDim3D(object.40.0, view = "axialmeso", label = "segment", cells = cells.to.3d.plot,
bounding.box = F, discrete.colors = c("#FFE354", "#93EC93", "#FF0000", "#8CDOF5",
"#CECECE"), size = 6, alpha = 0.4, title = "Segment identities: 40F/0B",
title.line = -35)
rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)

>t

Segment identities: 40F/0B

plotDim3D(object.40.1000, view = "axialmeso", label = "segment", cells = cells.to.3d.plot,
bounding.box = F, discrete.colors = c("#FFE354", "#93EC93", "#FF0000", "#8CDOF5",
"#CECECE"), size = 6, alpha = 0.4, title = "Segment identities: 40F/1000B",
title.line = -35)
rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)

Segment identities: 40F/1000B

Prechordal Plate Walks

Here, visitation frequency from the prechordal plate tip is plotted. Visitation frequency is only slightly
affected by the particular parameters used for biasing the transition matrix, however, the final “unbiased”
condition shows that the biasing step is absolutely critical.

plotDim3D(object, label = "visitfreq.log.29", view = "axialmeso2", dim.1 = 3,

dim.2 = 8, dim.3 = 1, cells = cells.to.3d.plot, bounding.box = F, continuous.colors = fire.with.grey,
continuous.color.limits = color.lim, size = 6, alpha = 0.3, title = "PCP:40F/80B",
title.line = -35)

rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)

e
PCP:40F/80B

plotDim3D(object.40.0, label = "visitfreq.log.29", view = "axialmeso2", dim.1 = 3,
dim.2 = 8, dim.3 = 1, cells = cells.to.3d.plot, bounding.box = F, continuous.colors = fire.with.grey,

continuous.color.limits = color.lim, size = 6, alpha = 0.3, title = "PCP: 40F/0B",
title.line = -35)

rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)

plotDim3D(object.40.1000, label = "visitfreq.log.29", view = "axialmeso2", dim.1 = 3,
dim.2 = 8, dim.3 = 1, cells = cells.to.3d.plot, bounding.box = F, continuous.colors = fire.with.grey,

continuous.color.limits = color.lim, size = 6, alpha = 0.3, title = "PCP: 40F/1000B",
title.line = -35)
rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)
|

——

PCP: 40F/1000B

plotDim3D(object.unbiased, label = "visitfreq.log.29.unbiased", view = "axialmeso2",
dim.1 = 3, dim.2 = 8, dim.3 = 1, cells = cells.to.3d.plot, bounding.box = F,
continuous.colors = fire.with.grey, continuous.color.limits = color.lim,
size = 6, alpha = 0.3, title = "PCP: Unbiased", title.line = -35)
rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)

PCP: Unbiased

Notochord Walks

Here, visitation frequency from the notochord tip is plotted. Visitation frequency is only slightly affected
by the particular parameters used for biasing the transition matrix, however, the final “unbiased” condition
shows that the biasing step is absolutely critical.
plotDim3D(object, label = "visitfreq.log.32", view = "axialmeso2", dim.1 = 3,
dim.2 = 8, dim.3 = 1, cells = cells.to.3d.plot, bounding.box = F, continuous.colors = fire.with.grey,
continuous.color.limits = color.lim, size = 6, alpha = 0.3, title = "Notochord: 40F/80B",
title.line = -35)
rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)

Notochord: 40F/80B

plotDim3D(object.40.0, label = "visitfreq.log.32", view = "axialmeso2", dim.1 = 3,
dim.2 = 8, dim.3 = 1, cells = cells.to.3d.plot, bounding.box = F, continuous.colors = fire.with.grey,
continuous.color.limits = color.lim, size = 6, alpha = 0.3, title = "Notochord: 40F/0B",
title.line = -35)

rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)
|

—
Notochord: 40F/0B

plotDim3D(object.40.1000, label = "visitfreq.log.32", view = "axialmeso2", dim.1 = 3,
dim.2 = 8, dim.3 = 1, cells = cells.to.3d.plot, bounding.box = F, continuous.colors = fire.with.grey,

continuous.color.limits = color.lim, size = 6, alpha = 0.3, title = "Notochord: 40F/1000B",
title.line = -35)

rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)

Notochord: 40F/1000B

plotDim3D(object.unbiased, label = "visitfreq.log.32.unbiased", view = "axialmeso2",
dim.1 = 3, dim.2 = 8, dim.3 = 1, cells = cells.to.3d.plot, bounding.box = F,
continuous.colors = fire.with.grey, continuous.color.limits = color.lim,
title = "Notochord: Unbiased", title.line = -35, size = 6, alpha = 0.3)
rgl::points3d(x = 0, y = 0, z = 0, col = "white", alpha = 0.1, size = 1)

Notochord: U nbia&

Compare Resultant Tree Structures

Much of the tree structure is preserved across all of these trees, though there is some variability.

The “slight shift younger” results in no change in the overall structure of the tree, and the “slight shift
older” results only in a slight change of the structure of the axial mesoderm (the cephalic mesoderm joins
the axial mesoderm, and the prechordal plate begins to separate earlier than the notochord). The “weakly
biased” parameters also result in only a small change in the structure of the tree (the same rearrangement
of the axial mesoderm, and a slightly earlier branchpoint of the preplacodal ectoderm from the remainder of
the non-neural ectoderm). The “very weakly biased” parameters, introduce more changes (now the paraxial
mesoderm splits earlier, along with the axial mesoderm, and the remainder of the mesendoderm branches
from the ectoderm later). However, even under these extreme parameters, most aspects of the tree are
reproduced and recapitulate known embryology. Finally, the “younger only” parameters result in a similar
tree structure as the “very weakly biased” parameters.

Move the object with built tree over to the main object slot.

object <- object.tree

rm(object.tree)

Automatically name the tips, so they will match the other trees

tip.names <- unique(object@group.ids[, c("ZF6S-Cluster", "ZF6S-Cluster-Num")])

tip.names <- tip.names[complete.cases(tip.names),]

object <- nameSegments(object, segments = tip.names$ ZF6S-Cluster-Num , segment.names = tip.names$ ZF6S-Cluster’)

tree.plots.1 <- list(plotTree(object, title = "40-80: Tree constructed in manuscript"),
plotTree(object.40.100, title = "40-100 (Slight shift younger)"), plotTree(object.50.80,
title = "50-80 (Slight shift older)"), plotTree(object.40.1000, title = "40-400 (Weakly biased)"))
tree.plots.2 <- list(plotTree(object.40.1000, title = "40-1000 (Very weakly biased)"),
plotTree(object.40.0, title = "40-0 (Younger Only)"))

grid.arrange(grobs = tree.plots.1l, ncol = 2)

40-100 (Slight shift younger)

40-80: Tree constructed in manuscript

swnopnasd

awiopnasd

40-400 (Weakly biased)

50-80 (Slight shift older)

awiopnasd

awiopnasd

= 2)

d.arrange(grobs = tree.plots.2, ncol

gri

40-1000 (Very weakly biased) 40-0 (Younger Only)

Pseudotime

Pseudotime

Compare changes in trajectory membership across entire tree

We quantified the percentage of the assignments (of cell to trajectory) that changed in each tree. Each cell
was determined as “in” or “not-in” each trajectory, and the percentage of those assignments that changed
for each alternative tree relative to the tree presented in the paper was determined.
alts <- c("object.40.100", "object.50.80", "object.40.400", "object.40.1000",

"object.40.0")

tree.change <- lapply(alts, function(alt) {

object.alt <- get(alt)

Some tips combined immediately, but this could be different between trees.
Create a data frame for each original tip to the terminal segment that it
belongs to in each resultant tree.

tree.terminal.segs <- data.frame(original.tip = object@tree$tips, row.names = object@tree$tips,

stringsAsFactors = F)

tree.terminal.segs[, 2:3] <- t(apply(tree.terminal.segs, 1, function(ot) {
ot <- ot[1]
if (ot %in% segTerminal(object)) {
seg.1l <- ot
} else {
t <- ot
while (!(t %inJ% segTerminal(object))) {
t <- object@tree$segment.joins.initial[c(which(object@tree$segment.joins.initial$child.

t), which(object@tree$segment.joins.initial$child.2 == t)),

"parent"]
}
seg.1 <- ¢t
}
if (ot %inJ, segTerminal(object.alt)) {
seg.2 <- ot
} else {

10

t <- ot
while (!(t %in% segTerminal(object.alt))) {
t <- object.alt@tree$segment.joins.initial[c(which(object.alt@tree$segment.joins.initial$child.1 ==
t), which(object.alt@tree$segment.joins.initial$child.2 ==
t)), "parent"]
}
seg.2 <- t
}
return(c(seg.1, seg.2))
1))

Now, get the cells in the tree overall for both trees so you only consider
those.

cells.in.tree.original <- unique(unlist(object@tree$cells.in.segment))
cells.in.tree.alt <- unique(unlist(object.alt@tree$cells.in.segment))
cells.in.trees <- intersect(cells.in.tree.original, cells.in.tree.alt)

Now, for each lineage, figure out the number of cells in that lineage for
each tree
tree.terminal.segs[, c(4:7)] <- t(apply(tree.terminal.segs, 1, function(ts) {
cells.orig <- intersect(cellsAlongLineage(object, segments = ts[2],
remove.root = F), cells.in.trees)
cells.alt <- intersect(cellsAlonglLineage(object.alt, segments = ts[3],
remove.root = F), cells.in.trees)
cells.both <- length(intersect(cells.orig, cells.alt))
cells.orig.only <- length(setdiff(cells.orig, cells.alt))
cells.alt.only <- length(setdiff(cells.alt, cells.orig))
cells.neither <- length(cells.in.trees) - (cells.both + cells.orig.only +
cells.alt.only)
return(c(cells.both, cells.orig.only, cells.alt.only, cells.neither))
1))

names (tree.terminal.segs) <- c("tip.run", "tip.orig", "tip.alt", "cells.both",
"cells.orig", "cells.alt", "cells.neither")

return(tree.terminal.segs)

b

names (tree.change) <- alts

Figure out how much each changed.

tree.changed.overall <- unlist(lapply(tree.change, function(tc) {
tcsum <- apply(tcl, 4:7], 2, sum)
changed <- round(((tcsum[2] + tcsum[3])/sum(tcsum)) * 100, digits = 2)
return(changed)

1))

tree.changed.overall.present <- pasteO(tree.changed.overall, "7")
names (tree.changed.overall.present) <- c("40-100", "50-80", "40-400", "40-1000",
II40_OH)

tree.changed.overall.present

40-100 50-80 40-400 40-1000 40-0

"9.0BY%" "10.91%" "9.43%" "14.02%" "11.07%"

Overall, the tree assignments are fairly robust to the parameter used for biasing the random walks, as only
about 10% of cells’ assignments change. The most extreme change is in the “very weakly biased” parameters
(40-1000: 14.02%), as expected from the more dramatic changes in the structure of the tree.

Compare changes in trajectory membership for each trajectory

We also wondered if some parts of the tree were more sensitive to others than the parameters of the recon-
struction. So, we quantified the percentage change in each lineage, given the different parameters.
tree.changed.by.lineage <- as.data.frame(lapply(tree.change, function(tc) {
apply(tcl, 4:71, 1, function(tcr) {
changed <- round((tcr[2] + tcr[3])/sum(tcr[1:4]) * 100, digits = 2)
1)
19D

11

tip.names <- unique(object@group.ids[, c("ZF6S-Cluster-Num", "ZF6S-Cluster")])

tip.names <- tip.names[complete.cases(tip.names),]

rownames (tip.names) <- tip.names[, "ZF6S-Cluster-Num"]

tree.changed.by.lineage$population <- tip.names[rownames(tree.changed.by.lineage),
"ZF6S-Cluster"]

names (tree.changed.by.lineage) <- c("40-100", "50-80", "40-400", "40-1000",
"40-0", "Population")

tree.changed.by.lineage

40-100 50-80 40-400 40-1000 40-0 Population
1 14.16 20.35 13.89 19.74 14.84 Epidermis
2 10.03 13.23 10.31 14.56 11.86 Optic Cup
3 6.27 4.02 5.51 5.30 4.26 Tailbud
5 6.98 4.69 7.03 18.14 4.59 Heart Primordium
8 10.46 13.65 11.23 15.24 11.72 Spinal Cord
10 14.16 20.77 13.90 19.73 14.84 Neural Plate Border
12 6.76 3.92 5.76 5.81 8.17 Somites Formed
16 10.10 13.28 10.24 16.14 11.53 Telencephalon
17 7.33 6.03 7.41 18.40 19.05 Endoderm Pharyngeal
18 6.89 3.66 6.68 4.11 3.28 Cephalic Mesoderm
19 10.38 13.57 10.66 15.85 11.68 Diencephalon Ventral
21 10.03 13.24 10.41 14.65 11.89 Neural Crest
22 10.03 13.24 10.41 14.65 11.89 Midbrain
26 7.03 5.79 6.98 17.95 18.78 Endoderm Pancreatic/Intestinal
29 0.97 0.45 0.88 1.32 0.40 Prechordal Plate
31 6.69 5.45 6.65 17.42 17.99 Pronephros
32 3.10 0.88 2.89 1.71 0.87 Notochord Anterior
33 6.69 5.45 6.65 17.42 17.99 Hematopoeitic (RBI)
34 6.55 4.52 5.78 5.59 4.44 Adaxial Cells
38 0.44 0.46 0.40 0.40 0.42 EVL/Periderm
40 0.62 0.55 0.49 0.53 0.64 Primordial Germ Cells
43 10.46 13.65 10.93 16.11 11.53 Hindbrain R5+6
45 14.52 20.92 16.29 21.45 14.85 Placode Epibranchial
46 14.48 20.88 16.24 16.82 14.89 Placode Trigeminal
47 10.46 13.65 10.93 16.11 11.53 Hindbrain R4
48 14.48 20.97 16.24 21.57 14.89 Placode Adenohypophyseal
49 14.48 20.97 16.84 21.57 14.89 Placode Lens
50 10.07 13.256 11.24 16.37 11.48 Hindbrain R3
51 14.52 20.74 16.44 21.28 14.85 Placode Otic
52 6.86 5.43 6.756 17.67 18.15 Hematopoeitic (ICM)
53 14.65 20.60 16.28 21.14 14.85 Placode Olfactory

Some lineages are clearly more sensitive than others; those that branched early (such as the axial mesoderm
— the notochord and prechordal plate) are very robust, even against this parameter, while those that branch
later (such as the individual placodes, which are just beginning to form) are much more sensitive.

Modifying diffuson map parameters

We also built the tree using two additional diffusion map sigmas (7 & 9) that performed reasonably well (see

“URD: Choosing Parameters - Diffusion Map Sigma”), while holding the biased random walk parameters
constant.

Compare Resultant Tree Structures

Much of the tree structure is preserved across all of these trees, though there is some variability.

Sigma 7 resulted in a later separatation of the non-axial mesendoderm from the ectoderm, but otherwise

produced a largely similar structure. Sigma 9 had more dramatic effects and produces the only tree so far

that really violates known embryology — a portion of the endoderm ends up assigned in the neural ectoderm,

while the optic cup ends up assigned in the mesendoderm. This illustrates that URD’s performance is much

more sensitive to the initial diffusion map that it operates on, and suggests that using the smallest possible

sigma that does not cause disconnections is likely to work best.

sigma.tree.plots <- list(plotTree(object, title = "Sigma 8: Tree constructed in manuscript"),
plotTree(object.dm7, title = "Sigma 7"), plotTree(object.dm9, title = "Sigma 9"))

grid.arrange(grobs = sigma.tree.plots, ncol = 2)

12

Sigma 7

Sigma 8: Tree constructed in manuscript

awiopnasd

swnopnasd

Sigma 9

swnopnasd

13

Compare changes in trajectory membership across entire tree

We quantified the percentage of the assignments (of cell to trajectory) that changed in each tree. Each cell
was determined as “in” or “not-in” each trajectory, and the percentage of those assignments that changed
for each alternative tree relative to the tree presented in the paper was determined.

alts <- c("object.dm7", "object.dm9")
tree.change <- lapply(alts, function(alt) {
object.alt <- get(alt)
Some tips combined immediately, but this could be different between trees.

Create a data frame for each original tip to the terminal segment that it
belongs to in each resultant tree.

tree.terminal.segs <- data.frame(original.tip = object@tree$tips, row.names = object@tree$tips,
stringsAsFactors = F)

tree.terminal.segs[, 2:3] <- t(apply(tree.terminal.segs, 1, function(ot) {

ot <- ot[1]

if (ot %in% segTerminal(object)) {
seg.1l <- ot

} else {
t <- ot

while (!(t %in’ segTerminal(object))) {
t <- object@tree$segment.joins.initial[c(which(object@tree$segment.joins.initial$child.1 ==
t), which(object@tree$segment.joins.initial$child.2 == t)),

"parent"]
}
seg.1 <- ¢t
}
if (ot %inJ), segTerminal(object.alt)) {
seg.2 <- ot
} else {
t <- ot
while (!(t %in% segTerminal(object.alt))) {
t <- object.alt@tree$segment.joins.initial [c(which(object.alt@tree$segment.joins.initial$child.1 ==
t), which(object.alt@tree$segment.joins.initial$child.2 ==
t)), "parent"]
¥
seg.2 <- t
}

return(c(seg.1, seg.2))
M

Now, get the cells in the tree overall for both trees so you only constder
those.

cells.in.tree.original <- unique(unlist(object@tree$cells.in.segment))
cells.in.tree.alt <- unique(unlist(object.alt@tree$cells.in.segment))
cells.in.trees <- intersect(cells.in.tree.original, cells.in.tree.alt)

Now, for each lineage, figure out the number of cells in that lineage for
each tree
tree.terminal.segs[, c(4:7)] <- t(apply(tree.terminal.segs, 1, function(ts) {
cells.orig <- intersect(cellsAlonglLineage(object, segments = ts[2],
remove.root = F), cells.in.trees)
cells.alt <- intersect(cellsAlonglLineage(object.alt, segments = ts[3],
remove.root = F), cells.in.trees)
cells.both <- length(intersect(cells.orig, cells.alt))
cells.orig.only <- length(setdiff(cells.orig, cells.alt))
cells.alt.only <- length(setdiff (cells.alt, cells.orig))
cells.neither <- length(cells.in.trees) - (cells.both + cells.orig.only +
cells.alt.only)
return(c(cells.both, cells.orig.only, cells.alt.only, cells.neither))

M

names(tree.terminal.segs) <- c("tip.run", "tip.orig", "tip.alt", "cells.both",
"cells.orig", "cells.alt", "cells.neither")

return(tree.terminal.segs)

14

b

names (tree.change) <- alts

Figure out how much each changed.

tree.changed.overall <- unlist(lapply(tree.change, function(tc) {
tcsum <- apply(tcl, 4:7]1, 2, sum)
changed <- round(((tcsum[2] + tcsum[3])/sum(tcsum)) * 100, digits = 2)
return(changed)

1))

tree.changed.overall.present <- pasteO(tree.changed.overall, "")
names (tree.changed.overall.present) <- c("Sigma7", "Sigma9")

tree.changed.overall.present

Sigma7 Sigma9

"13.5%" "12.71%"

Again, the diffusion map parameter has a stonger effect than the biased walk parameters, though still most
cells are robustly assigned to the same segments.

Compare changes in trajectory membership for each trajectory

We also wondered if some parts of the tree were more sensitive to others than the parameters of the recon-
struction. So, we quantified the percentage change in each lineage, given the different parameters.

tree.changed.by.lineage <- as.data.frame(lapply(tree.change, function(tc) {
apply(tcl[, 4:7], 1, function(tcr) {
changed <- round((tcr[2] + tcr[3])/sum(tcr[1:4]) * 100, digits = 2)
1))
19D

tip.names <- unique(object@group.ids[, c("ZF6S-Cluster-Num", "ZF6S-Cluster")])

tip.names <- tip.names[complete.cases(tip.names),]

rownames (tip.names) <- tip.names[, "ZF6S-Cluster-Num"]

tree.changed.by.lineage$population <- tip.names[rownames(tree.changed.by.lineage),
"ZF6S-Cluster"]

names (tree.changed.by.lineage) <- c("Sigma7", "Sigma9", "Population'")

tree.changed.by.lineage

Sigma7 Sigma9 Population
1 20.34 12.96 Epidermis
2 13.40 43.37 Optic Cup
3 14.62 9.71 Tailbud
5 15.83 7.90 Heart Primordium
8 13.90 15.09 Spinal Cord
10 20.70 12.95 Neural Plate Border
12 15.03 10.72 Somites Formed
16 14.15 14.81 Telencephalon
17 15.64 35.28 Endoderm Pharyngeal
18 14.92 5.56 Cephalic Mesoderm
19 13.88 14.66 Diencephalon Ventral
21 13.76 14.61 Neural Crest
22 13.94 14.61 Midbrain
26 15.61 13.35 Endoderm Pancreatic/Intestinal
29 3.67 1.37 Prechordal Plate
31 16.02 7.59 Pronephros
32 3.35 1.75 Notochord Anterior
33 15.43 7.59 Hematopoeitic (RBI)
34 15.59 10.41 Adaxial Cells
38 0.51 0.52 EVL/Periderm
40 1.05 0.54 Primordial Germ Cells
43 14.50 15.15 Hindbrain R5+6
45 14.30 13.42 Placode Epibranchial
46 17.99 13.52 Placode Trigeminal
47 14.45 15.15 Hindbrain R4
48 14.36 13.52 Placode Adenohypophyseal
49 14.36 13.52 Placode Lens
50 13.86 14.64 Hindbrain R3

15

51 14.23 13.42 Placode Otic

52 15.14 12.92 Hematopoeitic (ICM)

53 14.01 13.49 Placode Olfactory

Again, the choice of diffusion map makes a larger difference. Here, changes seem to be distributed relatively
equally across cell types, though some of the earliest branching types seem more robust (such as the notochord,
prechordal plate, EVL, and primordial germ cells). For sigma 9, as expected, there are dramatic changes in
the assignment to the optic cup and pharyngeal endoderm — the two populations that end up misconnected
in the tree.

16

Connect modules between stages

suppressWarnings (library("knitr"))
suppressWarnings (library("gplots"))
suppressWarnings (library("igraph"))
opts_chunk$set (tidy.opts=list(width.cutoff=80),tidy=TRUE,dev="png",dpi=150)

Load the NMF results for each of the 12 stages

A best K (number of modules or n_component argument used for running NMF) is picked for each stage
based on the stability of the results from 10 NMF runs with random initial conditions. The results are then
organized into two lists: one contains all the matrices Cs (modules by cells), and one for all the matrices Gs
(genes by modules).

load_obj <- function(file.path) {
temp.space <- new.env()
obj <- load(file.path, temp.space)
obj2 <- get(obj, temp.space)
rm(temp.space)
return(obj2)

}

DSHIGH_k = c(10)
DSOBLONG_k = c(11)
DSDOME_k = c(17)

DS30_k = c(15)
DS50_k = c(20)
DSS_k = c(25)
DS60_k = c(25)
DS75_k = c(24)
DS90_k = c(45)
DSB_k = c(40)
DS3S_k = c(31)
DS6S_k = c(42)

stages = c("HIGH", "OBLONG", "DOME", "30", "50", "S", "e0", "75", "90", "B", "33S",
1)

NMF_list = list()
for (stage in stages) {
stage_k = get(paste0("DS", stage, "_k"))I[1]
NMF_obj = load_obj(paste0("./DS_ZF", stage, "/result_tbls.Robj"))
NMF_list[[paste0("DS", stage)]] = NMF_obj[[paste0("K=", stage_k)]][["rep0"]]
}

DS_C <- list()
DS_G <- 1list()

ds_genes = c()

for (stage in stages) {
DS_C[[stage]l] <- NMF_list[[paste0("DS", stage)]]1[["C"]]
DS_G[[stagel] <- NMF_list[[paste0("DS", stage)]]1[["G"]]
colnames(DS_G[[stagel]) = rownames(DS_C[[stagell)
ds_genes = c(ds_genes, rownames(DS_G[[stagell))

Find and remove modules that are primarily driven by batch and
noise from each stage

Batch modules are found using the BatchGene function in Seurat package. Noise modules are defined as the
ones that are primarily driven by a single gene (the top ranked gene has a weight more than 3 times the
weight of the second ranked gene). Matrices G and C with the batch and noise modules removed were again
saved in two lists.

library("Seurat")

##
##
##

##
##
##
##
#i#

DS

DS_

Loading required package: ggplot2
Loading required package: cowplot

Warning: package 'cowplot' was built under R version 3.4.3

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

ggsave

C_use <- list()
G_use <- 1list()

maxScl <- function(df, dir = "row", max_value = NULL, log_space = TRUE) {

}

if (dir == "row") {
dir = 1
} else if (dir == "col") {
dir = 2
} else {
print("dir must be 'row' or 'col'.")
return
}

if (is.null(max_value)) {
max_value = median(apply(df, dir, max))
}
if (log_space) {
df = expmi(df)
max_value = expml(max_value)
}
df_scl = sweep(df, dir, apply(df, dir, max), "/")
df_scl = df_scl * max_value
if (log_space) {
df_scl = loglp(df_scl)

}
return(df_scl)

rmByCell <- function(scData, low = 1) {

}

bData = scData > 0
sum up each row in the binary matriz for cell numbers
num.cell = apply(bData, 1, sum)
rm.ind = which(num.cell <= low)
scData.f = scData
print (paste('removing', length(rm.ind), 'genes..."'))
if (length(rm.ind) > 0) {
scData.f = scDatal[-rm.ind,]
}
now there could be cells with no gene detection. remove them
rmByGenes(scData.f, lmt = 0)
return(scData.f)

rmByGenes <- function(scData, lmt) {

first creat a binary matriz for gene detection

cptr = scData > 0

then sum up each column in the binary matriz for gene numbers
num.cptr = apply(cptr, 2, sum)

rm.ind = which(num.cptr <= 1lmt)

scData.f = scData

if (length(rm.ind) > 0) {

print (paste('removing’', length(rm.ind), 'cells with fewer than',lmt, 'genes...

scData.f = scDatal, -rm.ind]
}
now there could be genes with no detection in any cells. remove them
cptr = scData.f > 0
num.cell = apply(cptr, 1, sum)
rm.ind = which(num.cell == 0)
if (length(rm.ind) > 0) {
scData.f = scData.f[-rm.ind,]
}

return(scData.f)

')

for (stage in stages) {
ZF_seurat = new('"seurat", raw.data = DS_C[[stagell)
ZF_seurat = Setup(ZF_seurat, project = "ds", min.cells = 2, names.field = 3,
names.delim = "_", do.logNormalize = F, is.expr = 0.01, min.genes = 1)
cut_off = 0.73
if (stage %in% c("B")) {

cut_off = 0.75
}
batch_module = BatchGene(ZF_seurat, idents.use =
auc.cutoff = cut_off)
print(paste("Stage:", stage))
print(paste("number of batches:", length(levels(ZF_seurat@ident))))
print("Batch modules:")
print (batch_module)
weigh_st = apply(DS_G[[stagell, 2, sort)
weigh_rat = weigh_st[dim(weigh_st) [1],]/weigh_st[dim(weigh_st)[1] - 1,]
nois = weigh_rat[which(weigh_rat > 3)]
if (length(nois) > 0) {
print("Noise modules:")
print (names(nois))

levels(ZF_seurat@ident), genes.use = rownames(ZF_seurat@data),

¥

batch_module = union(batch_module, names(nois))

print (batch_module)

DS_C_use[[stagel] <-
]

DS_C[[stagel] [setdiff (rownames(DS_C[[stagel]l), batch_module),

DS_C_use[[stagel]l <- maxScl(DS_C_usel[[stagel]l, log_space = F)
DS_G_use[[stagel] <- DS_G[[stagel][, setdiff(colnames(DS_G[[stagel]l), batch_module)]
DS_G_use[[stagel] <- rmByCell(DS_G_usel[[stage]l], low = 0)
DS_G_use[[stagel] <- maxScl(DS_G_usel[[stagel]l, dir = "col", log_space = F)

}

[1] "Stage: HIGH"

[1] "number of batches: 2"

[1] "Batch modules:"

[1] ||8II ll5" IIOII "1"

[1] "Stage: OBLONG"

[1] "number of batches: 2"

[1] "Batch modules:"

[1] non

[1] "Stage: DOME"

[1] "number of batches: 1"

[1] "Batch modules:"

NULL

[1] "Stage: 30"

[1] "number of batches: 2"

[1] "Batch modules:"

[1] "3" "5"

[1] "Stage: 50"

[1] "number of batches: 4"

[1] "Batch modules:"

[1] ||3|| ||4l| ||10|| ll16|l "9" "7" Iloll

[1] "Stage: S"

[1] "number of batches: 1"

[1] "Batch modules:"

NULL

[1] "Stage: 60"

[1] "number of batches: 3"

[1] "Batch modules:"

[1] |l5|| ||15|| ||13|| ||17||

[1] "Noise modules:"

[1] "23"

[1] "Stage: 75"

[1] "number of batches: 3"

[1] "Batch modules:"

[1] ||4|| ||23I| ||21|| ll16l|

[1] "Noise modules:"

[1] "0"

[1] "Stage: 90"

[1] "number of batches: 3"

[1] "Batch modules:"

[1] Il24" Ilgll ll23ll

[1] "Noise modules:"

[1] "6" "29" ll31" II33II ll34ll ll35ll ||36ll "37" Il38" II39II II4OI| ll41ll ||43ll "44"
[1] "Stage: B"

[1] "number of batches: 4"

[1] "Batch modules:"

[1] "15"

[1] "Noise modules:"

[1] ||20|| "26" ll27" II28II IISOII |I32Il ||34l| "35" ll36" II37II II38II |I39Il
[1] "Stage: 38"

[1] "number of batches: 1"

[1] "Batch modules:"

NULL

[1] "Noise modules:"

[1] "28" "29"

[1] "Stage: 63"

[1] "number of batches: 2"

[1] "Batch modules:"

[1] ll25" ||8||

[1] "Noise modules:"

[1] ||24|| II28" IIBOH II31II II32II |I33II ||36|| II38" ll39" II41II

Print out the size of matrix G at each stage (we will use these matrices to build the tree of
connected modules)

for (stage in stages) {
print(stage)
print (dim(DS_C_use[[stagel]))
print (dim(DS_G_use[[stagel]))
}

[1] "HIGH"

[1] 1262 6
[1] "OBLONG"
[1] 1211 10

[1] "DOME"

[1] 1583 17
[11 "30"

[1] 1553 13
[1] "50"

[1] 1721 13
[1] "s"

[1] 1573 25
[1] "e0"

[1] 1749 20
[11 "75"

[1] 1809 19
[1] "90"

[1] 1833 28
[1] "B"

[1] 1856 27
[1] "38"

[1] 1825 29
[1] "es"

[1] 1854 30

Calculate the weighted overlap between pairs of gene modules in
adjacent stages

Only the top 25 genes in each module were used in this calculation (see methods in the paper). The results
of the overlap scores are visualized in heat maps.

Weigh_intersect <- function(M.ind, Datal, Data2, numGene) {
i = M.ind[1]
j = M.ind[2]
DataiM = Datall, i, drop = F]
Data2M = Data2[, j, drop = F]
topGenesl = rownames(Datal) [order(DatalM, decreasing = T)[1:numGene]]
topGenes2 = rownames(Data2) [order(Data2M, decreasing = T)[1:numGene]]

}

inter_genes = intersect(topGenesl, topGenes2)

weighted_inter = (sum(DatailM[inter_genes,]) + sum(Data2M[inter_genes,]))/(sum(DatalM[topGenes1,
1) + sum(Data2M[topGenes2, 1))

return(weighted_inter)

Calc_intersect <- function(Datal, Data2, num_top = 25, weigh = F) {

}

Datal = sweep(Datal, 2, apply(Datal, 2, max), "/")
Data2 = sweep(Data2, 2, apply(Data2, 2, max), "/")

genes.com = intersect(rownames(Datal), rownames(Data2))
Datal = Datal[genes.com,]
Data2 = Data2[genes.com,]
num.spll = dim(Datal) [2]
num.spl2 = dim(Data2) [2]
cor.M = matrix(0, nrow = num.spl2, ncol = num.spll)
num.ind = num.spll * num.spl2
M.ind = vector("list", length = num.ind)
k=1
for (i in 1:num.spll) {
for (j in 1:num.spl2) {
M.ind[[k]] = c(i, j)
k=k+1

}

if (weigh) {
cor.M.vec = lapply(l:num.ind, function(x) Weigh_intersect(M.ind[[x]], Datal,
Data2, num_top))
} else {
cor.M.vec = lapply(l:num.ind, function(x) length(intersect(rownames(Datal) [order(Datall,
M.ind[[x]][1]], decreasing = T)[1:num_topl], rownames(Data2) [order(Data2l[,
M.ind[[x]1]1[2]], decreasing = T)[1:num_topl]))/num_top)
¥

for (i in 1:num.ind) {
indl = M.ind[[i]][1]
ind2 = M.ind[[i]][2]
cor.M[ind2, indl] = unlist(cor.M.vec[il])
¥
corDF = data.frame(cor.M, row.names = colnames(Data2))
colnames(corDF) = colnames(Datal)
return(corDF)

G_int <- list()
for (i in 1:(length(stages) - 1)) {

stage = stages[i]

stage_next = stages[i + 1]

gene_use = intersect(rownames(DS_G_use[[stage]l]l), rownames(DS_G_use[[stage_next]]))
G_stage = DS_G_usel[[stagel] [gene_use,]

G_stage_next = DS_G_use[[stage_next]] [gene_use,]

num_module = dim(G_stage) [2]

num_module_next = dim(G_stage_next) [[2]]

G_int[[stage]] <- Calc_intersect(G_stage, G_stage_next, num_top = 25, weigh = T)
returns overlap scores in a matrix, colnames are modules at this stage,

rownames are modules at next stage

xval <- formatC(as.matrix(G_int[[stage]]l), format = "f", digits = 2)
heatmap.2(as.matrix(G_int[[stagel]), Rowv = FALSE, Colv = FALSE, dendrogram = "none",
xlab = stage, ylab = stage_next, trace = "none", cellnote = xval, notecol = "black",

notecex = 0.5)

Color Key

uno)

04 0.6
Value

0.2

ONO190

o
O MO OO0 «—

HIGH

Color Key

uno9

0.6

0.2 04
Value

El)[e]e]

O~ NM TN
O~ ANMITINOMNOD T~ v

OBLONG

Count

Color Key
o HMQQF
0 02

Count

0.6
Value

Color Key
) m
0 02 06

Value

DOME

50

30

Color Key

uno)

0 02 04 06

Value

50

Color Key

junoed

0.6

Value

2

09

O N O0DNO—NT
O—ANM<HOMNO O™ AN NN

O~ NM T O O© N~

Color Key

uno)

0.6
Value

0.2

74

O NMFLONODOON
—AMOOMNODT AN

O O «~ N < © 0 O © «—~ (N <«
~ Y Y Y Y v v (N N N N

O «~ N MO < © M~

60

Color Key

junoed

0.6
Value

2

[44
0¢
6l
8l
Ll
Sl
14
€l
¢l
Ll
0l

~ N M 1B © N~ ©

75

Count

Color Key
o =pRlfitistogram.

Count

0 0.2 0.6
Value
20
Color Key
o =0 Histogram.
0 0.2 0.6
Value

O~ AN MITULOMNODDO~NMT ONMNODD
- - - —

B

10

-
N

N
~N

3
N

<
N

n
N

(o2}
N

-—
™

[32d
[sp]

38

Color Key

%o =alHistogram.
0 0.2 0.6
Value

6S

Filter out modules that have poor connection to modules in both adjacent stages

Modules that have <20% overlap with every module in the two adjacent stages are removed. Most of these
modules are enriched with ubiquitously or lowly expressed genes.
mod_kp = list()
for (i in 1:length(stages)) {
stage = stages[il
if (1> 1) {
stage_pre = stages[i - 1]

if (i < length(stages)) {
stage_next = stages[i + 1]
G_cor_stage = G_int[[stagel]
G_dim = dim(G_cor_stage)
if a module has poor correlation with all modules in the next stage and
previous stage, it is eliminated from the correlation matrix to reduce later
G_cor_max = apply(G_cor_stage, 2, max)
with_des = colnames(G_cor_stage) [which(G_cor_max > 0.2)]
no_des = setdiff(colnames(G_cor_stage), with_des)

¥
if (1> 1) {
G_cor_stage_pre = G_int[[stage_prel]
G_cor_max_pre = apply(G_cor_stage_pre, 1, max)
with_ans = rownames(G_cor_stage_pre) [which(G_cor_max_pre > 0.2)]
no_ans = setdiff (rownames(G_cor_stage_pre), with_ans)
if (i < length(stages)) {
mod_kp[[stagel] = union(with_des, with_ans)
mod_rm = intersect(no_des, no_ans)
} else {
mod_kp[[stage]] = with_ans
mod_rm = no_ans
}
} else {
mod_kp[[stage]l] = with_des
mod_rm = no_des
¥
if (length(mod_rm) > 0) {

print (stage)
print (mod_rm)

11

}

##
##
##
##
##
##
##
##
##
##

[1] "HIGH"

[1] nw7n ngn

[1] "OBLONG"

[1] ngn ngn n{Q"
[1] "DOME"

[1] "7" "10" "15"
[1] "s"

[1] m"17v v23"

[1] n3gn

[1] 25" no@"

G_int_use <- list()
for (i in 1:(length(stages) - 1)) {

stage = stages[i]

stage_next = stages[i + 1]

G_cor_stage = G_int[[stage]]

G_int_use[[stagel] = G_cor_stage[mod_kp[[stage_next]], mod_kp[[stagelll

Calculate overlap between modules in every other stage

If a stage was not deeply or comprehensively sampled and sequenced, we might not be able to recover
certain modules from that stage. This could potentially create dis-connections in the module lineages. In
order to produce continuous module lineages when there is potential occasional drop-out of modules, we
allow modules separated by one stage to connect to each other when connection to immediate neighbouring

stage is not found.

G_int2 <- list()
for (i in 1:(length(stages) - 2)) {

stage = stages[i]

stage_next = stages[i + 2]

gene_use = intersect(rownames(DS_G_use[[stagel]l), rownames(DS_G_use[[stage_next]]))

G_stage = DS_G_use[[stagel] [gene_use,]

G_stage_next = DS_G_use[[stage_next]] [gene_use,]

num_module = dim(G_stage) [2]

num_module_next = dim(G_stage_next) [[2]]

G_int2[[stagel] <- Calc_intersect(G_stage, G_stage_next, num_top = 25, weigh = T)

returns matrix of overlap scores, colnames are modules at this stage, rownames

are modules at next stage

xval <- formatC(as.matrix(G_int2[[stagel]), format = "f", digits = 2)

heatmap.2(as.matrix(G_int2[[stage]]), Rowv = FALSE, Colv = FALSE, dendrogram = '"none",
xlab = stage, ylab = stage_next, trace = "none", cellnote = xval, notecol = "black",
notecex = 0.5)

12

Count

Count

Color Key

- mandHistogram.

0 02 04 0.6

Value

Color Key

o -aRdHistogram.
0 0.2 0.4
Value

13

OBLONG

DA A OONOOTAWN SO

ONPWN-O

DOME

30

Count

Color Key
o M&j

Count

0 02 04 06
Value
Color Key
o M&E&l
0 02 04 06
Value

DOME

N & © ~ © o

30

14

50

Color Key

uno)

0.6

0.2

Value

09

O N OODNO—NT
O—ANM<T OO AN

50

Color Key

junoed

0 02 04 06

Value

7

O ANMFLONOOHON
TAMWODOMNOD T e AN

O~ NM T O O© N~

15

Color Key
o =pldHistogram,
0 02 0.6

Count

Value

O «~ N MO < ©O &~ 00 OO O
-

60
Color Key
o =adliLHistogram,
0 02 0.6
Value

Count

16

0.61 045

90

Color Key

o miiistogram.

Count

0 0.2 0.6
Value
(%9}
™
90
Color Key
%o =palfLiistogram.
0 0.2 0.6
Value
0
©

O~ AN MITULOMNODDO~NMT ONMNODD
Rl i il el e

T ANMOTOHD M
NANANANANNOM

Connect modules using the overlap scores calculated above

Build tables that record potential connections

For each module, find its most overlaped module in each of the two previous stages. Only modules with
>20% overlaps are taken into account.

for each module at one stage, want to find max correlated one in the two
previous stages

17

connect_module <- function(thresl = 0.15, thres2 = 0.25, G_cor_use, G_cor_use2) {

G_connect <- list()
for (i in 1:(length(stages) - 1)) {
stage = stages[i]
stage_next = stages[i + 1]
G_cor_stage = G_cor_use[[stage]]
Max_pre = apply(G_cor_stage, 1, order)
Max_pre_ind = Max_pre[dim(Max_pre) [1],]

Max_pre_M = colnames(G_cor_stage) [Max_pre_ind]
Max_value = apply(G_cor_stage, 1, max)
has_pre_ind = which(Max_value > thresl)
has_pre_M = rownames(G_cor_stage) [has_pre_ind]

if (1 ==1) {

G_connect [[stage_next]] = data.frame(matrix(NA, nrow
row.names = stage)

colnames(G_connect [[stage_next]]) =

= 1, ncol =

rownames (G_cor_stage)

dim(G_cor_stage) [1]),

G_connect[[stage_next]] [, has_pre_M] = Max_pre_M[has_pre_ind]
G_connect [[stage_next]] = G_connect[[stage_next]] [, has_pre_M]

} else {
stage_pre = stages[i - 1]
G_cor_stage2 = G_cor_use2[[stage_prell

all_M = union(rownames(G_cor_stage2), rownames(G_cor_stage))
= 2, ncol =

G_connect [[stage_next]] = data.frame(matrix(NA, nrow
row.names = c(stage, stage_pre))

colnames (G_connect[[stage_next]]) = all_M

length(all_M)),

G_connect[[stage_next]][1, has_pre_M] = Max_pre_M[has_pre_ind]

G_cor_stage = G_cor_use2[[stage_pre]]

Max_pre = apply(G_cor_stage, 1, order)
Max_pre_ind = Max_pre[dim(Max_pre) [1],]
Max_pre_M = colnames(G_cor_stage) [Max_pre_ind]
Max_value = apply(G_cor_stage, 1, max)
has_pre_ind = which(Max_value > thres2)
has_pre_M2 = rownames(G_cor_stage) [has_pre_ind]

G_connect[[stage_next]][2, has_pre_M2] = Max_pre_M[has_pre_ind]
G_connect [[stage_next]] = G_connect[[stage_next]][, union(has_pre_M,

has_pre_M2)]
}
}
return(G_connect)
}
G_int_connect =
thres2 = 0.2)

connect_module(G_cor_use = G_int_use, G_cor_use2 = G_int2, thresl = 0.2,

Build an adjacency matrix to record the final connections between modules

We start from modules in the oldest stage (6-somites). Each module is first connected to its most overlaped
module in the immediate previous stage. If no potential connection is recorded (in G_int_connect) for the
immediate previous stage, it will then be connected to the module recorded for the stage earlier (if there is
one). When the overlap between a module and its most overlapped module in the immediate previous stage

is less than 30%, and at the same time it has more than 50% overlap with its most overlapped module two
stages earlier, we then directly connect this module to the more previous module, and cut its connection to

the one in the immidiate previous stage.

build_netM <- function(G_connect, G_cor_use, G_cor_use2, thres = NULL, thres_pre = NULL) {

nodes_names = c()
for (i in 1:(length(stages) - 1)) {
stage = stages[i + 1]
G_ans = G_connect[[stagell
nodes_names = union(nodes_names, pasteO(stage, "_",
nodes_names = union(nodes_names, pasteO(stagesl[i],
which(!is.na(G_ans[stages[i], 1))1))
if (1> 1) {
nodes_names =
1], which(!is.na(G_ans[stages[i - 1], 1))1))

non
=9

}
}
num_nodes = length(nodes_names)
net_M = matrix(0, ncol = num_nodes, nrow =
rownames (net_M) = nodes_names

num_nodes)

18

union(nodes_names, pasteO(stages[i - 1],

colnames(G_ans)))

G_ans[stages[il,

_", G_ans[stages[i -

colnames(net_M) = nodes_names

for (i in 1:(length(stages) - 1)) {
stage_pre = stages[il
stage = stages[i + 1]
G_ans = G_connect[[stage]]
for (j in colnames(G_ans)) {
to_name = pasteO(stage, "_", j)
if (!'is.na(G_ans[stage_pre, jl1)) {
from_M = G_ans[stage_pre, j]
from_name = pasteO(stage_pre, "_", from_M)
get the correlation score to put in the connection matirx
net_M[from_name, to_name] = G_cor_usel[[stage_prell[j, from_M]

¥
if (1 '=1) {
stage_pre2 = stages[i - 1]
if (!is.na(G_ans[stage_pre2, jl1)) {
from_M2 = G_ans[stage_pre2, jl
from_name2 = pasteO(stage_pre2, "_", from_M2)
if (is.na(G_ans[stage_pre, j1)) {
net_M[from_name2, to_name] = G_cor_use2[[stage_pre2]][j, from_M2]
} else if ('is.null(thres)) {
G_cor = G_cor_use[[stage_prel][j, from_M]
G_cor_pre = G_cor_use2[[stage_pre2]][j, from_M2]
if (G_cor < thres && G_cor_pre > thres_pre) {
print(paste0("add ", from_name2, " to ", to_name))
net_M[from_name2, to_name] = G_cor_use2[[stage_pre2]][j, from_M2]
print(paste0("delete ", from_name, " to ", to_name))
net_M[from_name, to_name] = O
}
}
}
¥

}
}
return(net_M)

}
net_int = build_netM(G_int_connect, G_int_use, G_int2, thres = 0.3, thres_pre = 0.5)

[1] "add B_18 to 6S_19"
[1] "delete 35_11 to 6S_19"

Visualize the connections using igraph

draw.net = function(net_M, circular = T, label.size = 0.5) {
ind_use = union(which(apply(net_M, 1, sum) > 0), which(apply(net_M, 2, sum) >
0))
net_M = net_M[ind_use, ind_use]
net = graph.adjacency(net_M, mode = "directed", weighted = TRUE, diag = TRUE)
plot(net, vertex.label = V(net)$name, vertex.label.color = "black", edge.width = E(net)$weight *
1, edge.arrow.size = 0.2, edge.curved = TRUE, vertex.size = 2, vertex.label.cex = label.size,
vertex.color = "snow2", vertex.frame.color = "gray", layout = layout_as_tree(net,
mode = "all", circular = circular))
}

draw.net(net_int, circular = F, label.size = 0.37)

19

OBLONG 1 OBLONG 9 b 67 s ss iz W iy 5y 7608

HIGIDOMBONHIGIDEMBIMBONE 2 e PR e DO NI SG)5 602600256)60 21 S 09030 €5 67 505 o WX 01602660 496 229017
oBLONGEINJ0)2 B2 < S5 € poliE 1 2 600 X BPOBOVET 6 Dy H0E RS s Wile HBEKE Sk R
sasgh s S Wl @5 7 HOBLONGEN S019 700 DOMES 9% DOME 98 8D DOMEAS XIS SEM s s sy ashns xeshe
sasm w o $3 w3 7601 77 POME IS0 K 1938 396 10 OBLONG 482 OBLOG.0 S SS02801 00 S FOA TS T R PO T T
b6 20 L R 5 S PR T T R PR om0 63 W6 1 WG DOKEE 6 16 o
B Wwe) HD Wn KW K3 Eu) [S DONIE_ 1168 27 AT S TR
w0 F T Ry N Py S T P e b 0 o8 903 9gInen
s B3 1029 68 2651765 56508657 66,268 21682668 31 Eat Wiz By wh
s 205 $ W s W
S 6§20 30 o 82868 30805

9IS

6500

Trim path with poor quality

get_downstream <- function(net_M, start_M, exclude = c("")) {
all_ds = c(start_M)
M_ds = colnames(net_M) [which(net_M[start_M,] > 0)]
M_ds = M_ds[which(!M_ds %in% exclude)]
if (length(M_ds) > 0) {
all_ds = unique(c(all_ds, M_ds))
for (M_d in M_ds) {
all_ds = unique(c(all_ds, get_downstream(net_M, M_d, exclude = exclude)))
}
}
return(all_ds)
}

get_upstream <- function(net_M, start_M, exclude = c(""), mean_score = F, start_score = 0,

20

start_num_ans = 0) {
all_as = c(start_M)
M_as = rownames(net_M) [which(net_M[, start_M] > 0)]
M_as = M_as[which(!M_as %in% exclude)]
num_ans = start_num_ans
tot_score = start_score
if (length(M_as) > 0) {
all_as = unique(c(all_as, M_as))
num_ans = num_ans + length(M_as)
print (num_ans)
tot_score = tot_score + sum(net_M[M_as, start_M])
print (tot_score)

for (M_a in M_as) {
if (mean_score) {
in_result_list = get_upstream(net_M, M_a, exclude = exclude, mean_score = T,
start_score = tot_score, start_num_ans = num_ans)
all_as = unique(c(all_as, in_result_list$upstream))
print (all_as) print(in_result_list$score)
tot_score = in_result_list$score[1]
num_ans = in_result_list$score[2]
} else {
all_as = unique(c(all_as, get_upstream(net_M, M_a, exclude = exclude)))
}
}
}
if (mean_score) {
return_list = list()
return_list$upstream = all_as
return_list$score = c(tot_score, num_ans)
return(return_list)
} else {
return(all_as)
}
}

calc_path_qual <- function(net_M, path = "all", exclude = c("")) {
calculate the mean overlap level along the path end at the specified node(s)

if (path == "all") {
end_nodes = rownames(net_M) [which(apply(net_M, 1, max) == 0)]
} else {

end_nodes = path

}

score_vec = c(l:length(end_nodes)) * O

names (score_vec) = end_nodes

for (node in end_nodes) {
node_score = get_upstream(net_M, node, mean_score = T, exclude = exclude)
score_vec[node] = node_score$score[1]/node_score$score[2]

}

return(score_vec)

Calculate the average overlap score along each chain of connected gene modules

path_score = calc_path_qual(net_int)
hist(path_score, breaks = 30, main = "average weighted overlap")

21

average weighted overlap

Frequency

ailill; il

| | | | |
0.3 0.4 0.5 0.6 0.7 0.8

path_score

Keep only the paths with >0.45 average weighted overlap.

Most of the path with <0.45 average overlap were short or consist of either ubiquitous or lowly expressed
genes.
end_nodes_good = names(path_score[path_score >= 0.45])
all_nodes_good = c()
for (node in end_nodes_good) {

all_nodes_good = c(all_nodes_good, get_upstream(net_int, node))
}

all_nodes_good = unique(all_nodes_good)

net_int_good = net_int[all_nodes_good, all_nodes_good]
draw.net(net_int_good, circular = F, label.size = 0.37)

22

OBLONG. 1 2 5 s OBLOXG 0 965 O W Q)

DOME GG 2DOME_1 606 901 s o020 Y AT STy W09 DOME IHGH 4 6 W2 W ol e s Wy su B By
o a1 3 8 $3 o K» w3 KB e 02) 08 b Wy 67 TR I I) &0J0DOME 1464.22
et 1 56 Ex s 00 W 7 33 304 9627 DoME 2 0625 si)e Wm0 e Si% eS00 ED € JOBLONG 19
s $2 W e0 Wy S €05 6 6$29 S5 6S04 sSs 0k B3 EZ R DOMEs S 6 s 0.0 W
e 6.5 DOME 12 DONEE._ 166016 004 02 S5 a2 W5 el s 5y wa

S5 WG 6 €0 s K s D9 e e Ky $]
HHOBLOSG 4 G130k 968 62 i AN @y 2 9,26 5
B3 DOMES B3 K3 i 5]) 2% By s
S) S 3 w0 0 q 021 o)
BSOS K3 3 6805 682 £ ww Kn Wl E3 W B3

B S2 a6 Al S 3600 306 0 6

’ S2 o617 s 6808 K7 SR 621 62 6

o

52

S

SIS

Save this adjacency matrix for more customed visualization in yed

write.csv(net_int_good, file = "../Module Tree/knitffinalfadij.csv”)

Save connected module information for overlaying on URD tree

For each module at the end (oldest developmental stage) of a connected chain, find all its
upstream modules, and store them as an entry in one list

all_end_nodes = rownames(net_int_good) [which(apply(net_int_good, 1, sum) == 0)]
all_lineages <- list()
for (end_node in all_end_nodes) {

all_lineages[[end_node]l] = get_upstream(net_int_good, end_node)

23

}

save(all_lineages, file = "../Module Tree/knit_module_lineages.Robj")

For modules that are in the same connected chain, sum up their levels in each cell to represent
the expression of that lineage program. This results is a lineage by cell matrix

all_cells cQ)
all_genes = c()
for (stage in stages) {
C_use = DS_C_use[[stagel]
all_cells = c(all_cells, colnames(C_use))
G_use = DS_G_use[[stagel]
all_genes = c(all_genes, rownames(G_use))

}

all_genes = unique(all_genes)

all_Ms = rownames(net_int_good)

allM_allCell = data.frame(matrix(0, ncol = length(all_cells), nrow = length(all_Ms)),
row.names = all_Ms)

allGene_allM = data.frame(matrix(0, ncol = length(all_Ms), nrow = length(all_genes)),
row.names = all_genes)

colnames(allM_allCell) = all_cells

colnames(allGene_allM) = all_Ms

look stage by stage, fill in the expression matrix with MAX NORMALIZED gene

module expression

for (stage in stages) {
G_use = DS_G_use[[stagel]
G.max = apply(G_use, 2, max)
G_norm = sweep(G_use, 2, G.max, "/") ## now each module's top gene has weight 1
colnames(G_norm) = pasteO(stage, "_", colnames(G_norm))
M_use = intersect(colnames(G_norm), all_Ms)

C_use = DS_C_use[[stagel]

C.max = apply(C_use, 1, max)

C_norm = sweep(C_use, 1, C.max, "/")

rownames (C_norm) = pasteO(stage, "_", rownames(C_norm))

if (length(M_use) > 0) {
fill in gene matrix
allGene_allM[rownames (G_norm), M_use] = G_norm[rownames(G_norm), M_use]
fill in cell matrix
allM_allCell[M_use, colnames(C_use)] = C_norm[M_use, colnames(C_use)]

}

lineage_cell = data.frame(matrix(0, ncol = length(all_cells), nrow = length(all_end_nodes)),
row.names = all_end_nodes)
colnames(lineage_cell) = all_cells

matriz to use: allM_allCell
for (lin in all_end_nodes) {
lin M = all_lineages[[lin]]
if (length(setdiff(lin_M, all_Ms)) == 0) {
sum up and add
lineage_cell[lin,] = apply(allM_allCell[lin_M, colnames(lineage_cell)],
2, sum)
} else {
print(paste(lin, "has module(s) that are not in the table"))
¥

Re-name some of the rownames in the lineage by cell matrix based on their expression in URD
lineage

lineage_names = rownames(lineage_cell)

lineage_names[which(lineage_names == "6S_0")] = "Housekeeping"
lineage_names [which(lineage_names == "6S5S_1")] = "Epidermis"
lineage_names[which(lineage_names == "6S_2")] = "PSM"

24

lineage_names[which(lineage_names == "6S_3")] =
lineage_names[which(lineage_names == "6S_4")] =
lineage_names [which(lineage_names == "6S5_5")]

lineage_names[which(lineage_names == "6S_6")] =
lineage_names[which(lineage_names == "6S_7")]

lineage_names[which(lineage_names == "65_9")] =
lineage_names[which(lineage_names == "6S_10")] =
lineage_names[which(lineage_names == "6S_13")] =
lineage_names[which(lineage_names == "65_14")] =
lineage_names[which(lineage_names == "6S_15")] =
lineage_names [which(lineage_names == "6S5S_17")] =
lineage_names[which(lineage_names == "6S_18")] =
lineage_names [which(lineage_names == "6S_19")] =
lineage_names[which(lineage_names == "6S_20")] =
lineage_names[which(lineage_names == "6S_21")] =
lineage_names[which(lineage_names == "6S_22")] =
lineage_names[which(lineage_names == "65_23")] =
lineage_names[which(lineage_names == "6S_26")] =
lineage_names[which(lineage_names == "6S_27")] =
lineage_names[which(lineage_names == "65_29")] =
lineage_names[which(lineage_names == "65_34")] =
lineage_names[which(lineage_names == "6S_35")] =
lineage_names[which(lineage_names == "6S_37")] =
lineage_names[which(lineage_names == "65_40")] =
lineage_names [which(lineage_names == "35_22")] =
lineage_names[which(lineage_names == "3S_26")] =
lineage_names[which(lineage_names == "90_28")] =
lineage_names[which(lineage_names == "75_22")] =

rownames (lineage_cell) = lineage_names

Save this lineage by cell table. Also save

npCp
"EVL"

= "SomiteForming"

"CellCycle"

= "HeartPrimordium"

"HindbrainR3456"
"Notochord"
"OpticCup"
"NeuralCrest"
"Placode"
"Adaxial"
"Somite"
"NegativeRegulationRnaSynthesis"
"Tailbud2"
"CephalicMeso"
"Hematopoeitic_Pronephros"
"Midbrain"
"Endoderm"
"NonNeuralEctoderm"
"HindbrainR7_SpinalCord"
"Telencephalon"
"SpinalCord"
"CellCycle2"
"Tailbud"
"Diencephalon"
"ApoptoticLike"
"PGC"
IIEVL2 n

a table with all modules and their levels in each cell

write.csv(allM_allCell, file = "../Module Tree/knit_AllModuleByAllCell.csv")
write.csv(lineage_cell, file = "../Module Tree/knit_LineageByCell_ModuleSum.csv")

for each 50% module, get its down stream connected modules and save their expression in all

cells in a matrix

all Ms = rownames(net_int_good)

M_stages = unlist(lapply(all_Ms, function(x) unlist(strsplit(x, "_"))[1]))

M_ZF50_ind = which(M_stages == "50")
M_ZF50 = all_Ms[M_ZF50_ind]

ZF50_M_after <- list()
for (M in M_ZF50) {

ZF50_M_after[[M]] = get_downstream(net_int_good, M)

}

not_in_oep_M = c("50_5", "50_2", "50_12")
all_in_oep = c()
all_not_oep = c()
ubi_M = c("50_8", "50_17")
for (ZF50_M in names(ZF50_M_after)) {
if (ZF50_M %inJ, not_in_oep_M) {

all_not_oep = c(all_not_oep, ZF50_M_after[[ZF50_M]])

} else {
if (1ZF50_M %in% ubi_M) {

all_in_oep = c(all_in_oep, ZF50_M_after[[ZF50_M]])

}
}

all_50M_NormSum = data.frame(matrix(0, ncol = dim(allM_allCell) [2], nrow = length(ZF50_M_after)),

row.names = names(ZF50_M_after))

colnames(all_50M_NormSum) = colnames(allM_allCell)

for (name in names(ZF50_M_after)) {

25

all_50M_NormSum[name,] = apply(allM_allCell[ZF50_M_after[[namell, 1, 2, sum)
}

oep_M = data.frame(matrix(0, ncol = dim(allM_allCell) [2], nrow = 2), row.names = c("In_oep",
"Not_in_oep"))

colnames (oep_M) = colnames(allM_allCell)

oep_M["In_oep",] = apply(all_bOM_NormSum[intersect(all_in_oep, rownames(all_50M_NormSum)),
1, 2, sum)

oep_M["Not_in_oep",] = apply(all_50M_NormSum[not_in_oep_M, 1, 2, sum)

save tables

write.csv(all_50M_NormSum, file = "../Module Tree/knit_ZF50_allModule_maxNormSum.csv")
write.csv(oep_M, file = "../Module Tree/knit_ZF50_0EPM_maxNormSum.csv")

save the top 25 genes for each module

top_25genes <- list()
for (M in colnames(allGene_allM)) {
top_25genes[[M]] = rownames(allGene_allM) [order(allGene_allM[, M], decreasing = T)[1:25]]
}
save(top_25genes, file = "../Module Tree/knit_Module_top_25genes.Robj")

find and save member genes for each module using a mixture model

library(mixtools)

first build a mixture model with gaussian mixture then select the genes with
higher posterior for the distribution with higher mu return the list of genes
top_genes <- list()

thres = 0.15

par(mfrow=c(3,3))

for (M in colnames(allGene_allM)) {

genes_use = rownames(allGene_allM) [which(allGene_allM[, M] > thres)]

vec = as.numeric(allGene_allM[allGene_allM[, M] > thres, M])

mixmdl = normalmixEM(as.numeric(allGene_allM[allGene_allM[, M] > thres, M]),
mean.constr = c(mean(vec[which(vec < 0.4)]), mean(vec[which(vec > 0.5)])),
lambda = c(19, 1), epsilon = 1e-05)

low_dist = order (mixmdl$mu) [1]

high dist = order (mixmdl$mu) [2]

high_gen_ind = which(mixmdl$posterior[, high_dist] - mixmdl$posterior[, low_dist] >=
0)

low_weigh = min(as.numeric(allGene_allM[genes_use[high_gen_ind], M]))

top_genes[[M]] = rownames(allGene_allM) [which(allGene_allM[, M] > low_weigh)]

plot (mizmdl,which=2) title(main=paste0('\n\n',M, "',

',as.character(length(top_genes[[M]]))))

}

save the list
save(top_genes, file = "./Result_obj/knit_Module_top_genes_MixEM.Robj")

26

Batch module removal and Clustering analysis of
SMART-seq dataset

library("knitr")
opts_chunk$set (tidy.opts=1list(width.cutoff=80),tidy=TRUE,dev="png",dpi=150)

Read in the NMF result object

NMF was run using function NMF from sklearn.decomposition in Python scikit-learn library. The results were
then integrated into an R object, which we read in below. We varied the number of modules (n_components
argument in NMF function) from 5 to 25, and eventually chose to use the result from K=18, because it
resulted in a low inconsistency and a high cophenetic coefficient when repeated 10 times with random initial
conditions.
load_obj <- function(file.path) {

temp.space <- new.env()

obj <- load(file.path, temp.space)

obj2 <- get(obj, temp.space)

rm(temp.space)

return(obj2)
}
nmf_res = load_obj("NMF/Results/P2_use/result_tbls.Robj")
nmf_K18 = nmf_res$ K=18 $rep0

nnf_K18 contains the genes by modules matrix (G) and the modules by cells matrix (C) resulted from running
NMF with n_components=18.

Find gene modules that are good predictors for experimental
batches

First look at the PCA plot for all transcriptomes with all gene modules (using matrix C)

library("Seurat")

ALL_C18 = new("seurat", raw.data = nmf_K18$C)

ALL_C18 = Setup(ALL_C18, project = "allC18", min.cells = 2, names.field = 1, names.delim = "_",
do.logNormalize = F, is.expr = 0.01, min.genes = 1)

ident = ALL_C18@ident

levels(ident) <- c(levels(ident), "MZoep", "mix"
ident [grep("wt", ident)] = "mix"
ident [grep("oep", ident)] = "mix"

ident [grep("oep_p0", names(ident))] = "MZoep"
ALL_C18@ident = ident

ALL_C18 = PCA(ALL_C18, do.print = F, pcs.print = 3, genes.print = 6, pc.genes = rownames(ALL_C18@data))
PCAPlot (ALL_C18, 1, 2, pt.size = 0.75)

2.54

- © =
N e O
0.0 .
O Seege ad. e °
a RE L3 '.'.:',..-"‘-?-' 5 @
R . . . MZoep
. . ° "lmx
-2.54
-2 0 2 4

PC1

Then separate transcriptomes from the two genotypes (wild-type and MZoep) and find batch
modules for each genotype

wt_cells = c(grep("wt", ALL_C18@cell.names), grep("zf", ALL_C18@cell.names))
oep_cells = c(grep("oep", ALL_C18@cell.names))

ALL_C18wt = SubsetData(ALL_C18, cells.use = ALL_C18@cell.names[wt_cells])
ALL_C18oep = SubsetData(ALL_C18, cells.use = ALL_C18@cell.names [oep_cells])

batch_modulewt = BatchGene(ALL_C18wt, idents.use = c("zfl", "zf2", "zf3"), genes.use = rownames(ALL_C18wt@data),
auc.cutoff = 0.67)

batch_moduleoep = BatchGene (ALL_C18oep, idents.use = c("MZoep", "mix"), genes.use = rownames(ALL_C18oep@data),
auc.cutoff = 0.67)

batch_modules18 = union(batch_moduleoep, batch_modulewt)
print("Batch modules:")

[1] "Batch modules:"
print (batch_modules18)

[1] I'5|I Il7ll l|2ll IIO" "1" "6" I|10" II13II

batch_genes = nmf_K18$top30genes[, paste0("Module.", batch_modulesi8)]

knitr::kable(batch_genes,caption = 'Top 30 genes in batch modules')

print(xtable::xtable(batch_genes, caption = "Top 30 genes in batch modules"), type = "latex",
scalebox = 0.55)

% latex table generated in R 3.4.0 by xtable 1.8-2 package % Tue Feb 20 12:00:15 2018
Generate PCA plot for all cells with all the non-batch gene modules
ALL_C18 = PCA(ALL_C18, do.print = F, pcs.print = 3, genes.print = 6, pc.genes = setdiff (rownames(ALL_C18@data),

batch_modulesi18))
PCAPlot (ALL_C18, 1, 2, pt.size = 0.75)

Module.5 Module.7 Module.2 Module.0 Module.1 Module.6 Module.10 Module.13
0 SIDKEY-23A13.18 SL:CH73-195119.3 HS3ST3B1B ANOYA 7GC:158463 BX901974.1 RBM4.3 7GC:163040
1 SIDKEY-23A13.14 TOP1 SI:DKEY-28A3.2 ZGC:173587 OTUD4 BX470115.2 SI:DKEYP-3B12.7 ZGC:194989
2 METAZOA_SRP CABZ01084942.1 PHYHIP ucPr3 SI:CH211-195B11.4 SI:CH211-234C11.3 SI:DKEYP-3B12.6 SI:CHT73-36P18.2
3 SLDKEY-23A13.16 RAPGEF6 UPKI1A SI:CH211-113A14.24 SI:CH211-113A14.16 BX927193.1 TAF15 FP236812.1
4 ZGC:153405 ZGC:AT17T5 ARID3A ZNF1066 SI:DKEY-6D5.4 SLDKEY-238014.7 ALYREF SI:DKEY-108K21.14
5 RN7SK PROCA KCTD5 HNRNPAOB SI:CH1073-159D7.7 ~ BX511215.1 METAZOA_SRP SI:CH211-113A14.24
6 ZGC:173587 FNIP1 TRIM45 ZNF1070 SI:DKEY-23A13.4 ZNF1099 CHDS SL:DKEY-108K21.21
7 SEDKEY-261M9.12 NME2A NCOA7 SEDKEYP-3B12.6 SI:CH211-267E7.11 ZNF1031 ENSDART00000133990 SI:DKEY-261M9.11
8 SLDKEY-261M9.19 SI:CH211-168H21.2 SI:DKEY-58J15.10 ZGC:113984 DUT ZNF1040 SI:DKEY-56M15.3 CHDS
9 TRPC4A GPRC5BB RNF220B SLDKEYP-3B12.7 SLDKEY-23A13.18 ZNF1125 HNRNPAIA SI:DKEY-108K21.17
10 MPL CR318603.2 SI:CH211-196H16.12 SI:CH73-368J24.14 P4HB BX005448.2 ENSDART00000129497 B3GLCTB
11 SI:DKEY-108K21.26 AGRP2 SYNGAP1A 7ZGC:110434 RPL6 SI:DKEY-1401.14 BX324155.1 SPTBN1
12 MYO3A DIABLOA CNR1 SYNCRIP NCALDA SI:CH211-223A21.3 POLR2A SLC7A1
13 CFD PON1 GRBT7 ENSDART00000129497 SI:DKEY-23A13.10 ZNF1074 HNRNPM SI:CH211-113A14.15
14 RPP25 SI:CH211-241E1.5 JAG1B RPL14 SI:CH211-272F15.5 ZNF1084 H3F3B.1 FP236812.2
15 SL:CH211-113A14.18 DDC NRXNI1B SI:CH211-128N12.4 PPIB ZNF1063 BX005448.2 7ZGC:173652
16 SMC1A MYO3A TNFAIPSL2A ZNF1068 GDF3 BX324179.3 TNPO2 7ZGC:113984
17 SETD2 AGRP CNNM1 SNRPC BZWI1A BX324155.1 PRAM1 JARID2B
18 SIDKEY-108K21.17 ARLI6 RHD 7ZGC:153405 SI:DKEY-95P16.2 SI:DKEY-269024.6 RNF19A PRCC
19 MLXIP LYRM1 SI:CH211-221J21.3 SL:CH1073-159D7.4 SI:CH211-130H14.6 ~ ZNF1065 CFL1 LAMA1
20 PTGFR COPZ2 THEMIS2 LYRM1 SI:DKEY-16M19.4 SNAI2 SI:CH211-114N24.6 SI:CHT73-36P18.5
21 SIDKEY-261M9.15 NEU3.3 GRNAS UHRF1 FAMT78BB LRRC8C ITGA10 7ZGC:153405
22 SL:CH73-368J24.14 SI:DKEY-148C4.3 SCOCB HIST2H2AB CDKN1BB 7GC:111868 HNRNPA1B SI:CH211-113A14.18
23 CHDS SI:CHT73-281F12.4 SL:CH211-276A17.5 ENSDART00000138896 TMED9 CTSC PVALB9 LAMC1
24 PCNT KLHL22 SI:CH211-160017.6 ~ ZNF1080 PDIA3 ZNF1064 SRSF1A SDKEY-199M13.4
25 SL:CH211-113A14.24 SMARCD3A SFT2D1 PPIG SI:DKEY-5116.2 SI:DKEY-43F9.4 RNASEP_NUC SI:DKEYP-3B12.6
26 CX43 PAXTA CSFIRB ZGC:173552 SI:CH211-113A14.10 CA9 SLC17ATA HSP90AAL.2
27 ITSN2B H1M MCHR2 H2AFVB WEE2 ZGC:173705 HNRNPAOA SI:DKEY-261M9.12
28 ZGC:110434 HSPE1L SI:CH211-178N15.1 HUWE1 SI:DKEY-23A13.15 SIDKEY-156K2.3 SFPQ FTR76
29 NANS CABZ01001464.1 7GC:154093 SI:CH211-113A14.18 SI:CH211-190K17.31 SL:DKEY-247I3.6 BAZ2A MED13A
Table 1: Top 30 genes in batch modules
24
.
O
O
o~ .
o | @
a o- zf3
. . MZoep
.
'.lmx
24

Cells are now much less separated by batch in the plot.

PC1

Remove batch effects from the original expression matrix

This batch effect removed expression matrix will be used later for spatial mapping.

read in the expression matrix used for running NMF

tbl.dir =
dataset =
dataset_scl =

"./NMF/Datasets/"
read.table(pasteO(tbl.dir, "ALL_noBatchCorrection_var.txt"))
read.csv("./NMF/Results/P2_use/tables/scaled_data.csv", row.names =

1)

Removed batch effect

This is done by subtracting the product of the batch matrices (portions of matrix G and C with the batch
modules) from the original data matrix.

rmNMFbatch <- function(batch_modules, G, C, dataset_scl, dataset) {
multiply the matrices to calculate batch effect:
batch_scl = as.matrix(G[, paste0("X", batch_modules)]) %*} as.matrix(C[batch_modules,
ip)

subtract it from the dataset used for running NMF
batchRM_scl = dataset_scl - batch_scl ##dataset_scl is the nonzero-median scaled dataset

correct for negative wvalues
batchRM_scl[batchRM_scl < 0] = 0

calculate non-zero median of each geme in the original dataset

binaryData = dataset > O ##dataset is the original log dataset (before median scaling)

dataset_2 = expml(dataset)

scl_fac = unlist(lapply(rownames(dataset_2), function(x) median(as.numeric(dataset_2[x,
binaryDatalx, 11))))

calculate non-zero median of the scaled dataset

binaryData = dataset_scl > 0

dataset_2 = expml(dataset_scl)

scl_med = unlist(lapply(rownames(dataset_2), function(x) median(as.numeric(dataset_2[x,
binaryDatalx, 11))))

calculate non-zero median of the scaled dataset with batch effect subtracted

binaryData=batchRM_scl>0

dataset_2 = expml(batchRM_scl)

batchRM_scl_med = unlist(lapply(rownames(dataset_2), function(x) median(as.numeric(dataset_2[x,
binaryDatalx, 11))))

med_fac = batchRM_scl_med/scl_med
final_scl_fac = scl_fac * med_fac/scl_med
final_scl_fac=scl_fac/scl_med

the medians in the scaled dataset is adjusted to the median of the mon-zero
medians transform the batch corrected dataset to its (more or less) original
scale
batchRM_unscl=loglp (sweep (expml (batchRM_scl),1,scl_fac/median(scl_fac), '*'))
batchRM_unscl = loglp(sweep(expml(batchRM_scl), 1, final_scl_fac, "*"))
return(batchRM_unscl)

}

K18_noBatch = rmNMFbatch(batch_modules18, nmf_K18G, nmf_K18C, dataset_scl, dataset)

Compare datasets before and after batch correction

PCA plots are used to visualize transcriptomes in gene space before and after batch effect removal.

data_raw = new('"seurat", raw.data = dataset)
K18_noBatch = new("seurat", raw.data = K18_noBatch)

data_raw = Setup(data_raw, project = "pre_batch_rm", min.cells = 1, names.field = 1,
names.delim = "_", do.logNormalize = F, is.expr = 0.1, min.genes = 10)

K18_noBatch = Setup(K18_noBatch, project = "post_batch_rm", min.cells = 1, names.field = 1,
names.delim = "_", do.logNormalize = F, is.expr = 0.1, min.genes = 10)

ident = data_raw@ident

levels(ident) <- c(levels(ident), "MZoep", "mix"
ident [grep("wt", ident)] = "mix"

ident [grep("oep", ident)] = "mix"

ident [grep("oep_p0", names(ident))] = "MZoep"
data_raw@ident = ident

K18_noBatch@ident = ident

data_raw = PCA(data_raw, pcs.print = 3, genes.print = 6, pc.genes =
[1] "pC1"
[1] "SI:DKEY-153M14.1" "ZGC:158463" "SI:DKEYP-3B12.10"
[4] "FXYD6" "Cc1QB" "SI:DKEY-108K21.12"
[1] "
[1] "AGRP" "LYRM1" "DIABLOA" "AGRP2"
[5] "CABZ01084942.1" "HNRNPAOB"
[1] "¢
[1] "
[1] "pC2"
[1] "HS3ST3B1B" "GRB7" "ARID3A"
[4] "RHD" "SI:CH211-235I11.5" "SI:DKEY-186021.1"
[1] "
[1] "HMGB2A" "HNRNPABB" "SI:DKEY-151G10.6"
[4] "HNRNPAOL" "NPM1A" "RAN"
[1] "
[1] "
[1] "PC3"
[1] "SI:DKEY-108K21.26" "CX43" "SMC1A"
[4] "SI:CH211-113A14.8" "MPL" "SI:CH211-113A14.18"
[1] "
[1] "SLC17A7A" "CYP4T8" "SCN4BB" "PVALB9" "NTF3" "PRAM1"
[1] "
[1] "
PCAPlot (data_raw, 1, 2, pt.size = 0.75)
25 1
0- .
~ .
O
o .
-25 1 . «® o
M
l. L]
-50 1 . . . r
-30 -20 -10 0 10
PC1
K18_noBatch = PCA(K18_noBatch, pcs.print = 3, genes.print = 6, pc.genes
[1] "PC1"
[1] "OSR1" "KIRREL3L" "LYRM1" "SNAI1A" "FSCN1A" "EFNB2B"
[1] "
[1] "S0Ox3" "SI:DKEY-11015.10" "FAM212AA"
[4] "SI:CH211-170D8.2" "SOX19A" "CXCR4B"
[1] "
[1] "
[1] "pC2"
[1] "KRT4" "CLDNE" "KRT5" "KRT8" "KRT92" "MID1IP1A"

rownames (data_raw@data))

‘. zf1
.. zf2
O
© vizoep
"lmx

rownames (K18_noBatch@data))

[1] "¢

[1] "SI:DKEY-108K21.23" "NOTUM1A" "RND1L"

[4] "TOP1" "DNTT" "CABZ01084942.1"
[1] "

[1] "

[1] "PC3"

[1] "DIABLOA" "FOXA3" "AGRP" "LYRM1"
[5] "CABZ01084942.1" "AGRP2"

[1] v

[1] "ALDOB" "S0X3" "Sox2"

[4] "SI:CH211-222L21.1" "ZIC2B" "SOX19A"

[1] "

[1] "¢

PCAPlot (K18_noBatch, 1, 2, pt.size = 0.75)

0 -
O =
O
§ 207 0=
‘ . N . MZoep
‘ coe '. mix
-40-)

20 0 20
PC1

Save the dataset with batch effect removed for spatial mapping with Seurat
save.dir = "./Datasets/"

write.table(K18_noBatch@data, file = pasteO(save.dir, "Batch_corrected_var.txt"),
quote = FALSE, sep = "\t")

Clustering analysis of cells based on non-batch gene modules

First, Scale matrix C and assign names to modules

The C matrix (non-batch modules by cells) is scaled such that each row has the same maximum value before
clustering. Modules are assigned names according to knowledge about their top ranked genes.

maxScl <- function(df, dir = "row", max_value = NULL, log_space = F) {
if (dir == "row") {
dir = 1
} else if (dir == "col") {
dir = 2
} else {
print("dir must be 'row' or 'col'.")
return
¥

if (is.null(max_value)) {
max_value = median(apply(df, dir, max))
}
if (log_space) {
df = expmi(df)
max_value = expml(max_value)
}
df_scl = sweep(df, dir, apply(df, dir, max), "/")
df_scl = df_scl * max_value
if (log_space) {
df_scl = logip(df_scl)

¥
return(df_scl)

scld_C = maxScl(nmf_K18$C)

rownames(scld_C) = c("0O", "1i", "2", "Marginal", "EVL", "5", "6", "7", "Marginal Dorsal",
"Dorsal", "10", "Apoptotic-like", "YSL", "13", "PGC", "Ventral Animal", "Dorsal Animal",
"Ventral")

Apply hierarchical clustering

Davies-Bouldin index is used to determin the optimal number of clusters (as the number that gives the lowest
DB index). Clustering result is shown as heatmaps, with color bars on top indicating genotype (dark blue
= wt; light blue = MZoep) or cluster membership.
library(gplots)
library(RColorBrewer)
library(clusterSim)
cluster_map <- function(scld_C, genos = NULL, group = c("cluster", "geno"), group_colors = NULL,
den_cut = 0.75, metric = c("cor", "dist"), method = "complete", DB = F) {

if (metric == "cor") {
stds = apply(scld_C, 2, sd)
zero_var = which(stds == 0)

if (length(zero_var) > 0) {
print(paste("removing ", length(zero_var), "zero-variance cell(s) from dataframe:"))
print(colnames(scld_C) [zero_var])
scld_C = scld_C[, -zero_varl]

}
hc <- hclust(as.dist(1 - cor(as.matrix(scld_C))), method = method)
} else if (metric == "dist") {
hc <- hclust(dist(as.matrix(t(scld_C)), method = "euclidean"), method = method)

}
if ("cluster" Y%in¥% group) {
if (den_cut < 1) {
mycl <- cutree(hc, h = max(hc$height) * den_cut)
} else {
mycl <- cutree(hc, k

den_cut)
}
if (is.null(group_colors)) {
mycolhc <- topo.colors(length(unique(mycl)))
mycolhc <- mycolhc[as.vector(mycl)]
} else {
mycolhc <- group_colors[as.vector(mycl)]
}
cluster = mycolhc
¥
if ("geno" %in% group) {
geno_code = vector("numeric", length = dim(scld_C)[2])
geno_code = geno_code * 0 + 1
i=1
for (geno in genos) {
geno_code [grep(geno, colnames(scld_C))] = i * 2
i=1i+1

}
if (is.null(group_colors)) {
mycolgeno <- topo.colors(2 * length(genos))
mycolgeno <- mycolgeno [geno_code]
} else {
mycolgeno <- group_colors[geno_code]
}
geno = mycolgeno
}
hmcol <- colorRampPalette(brewer.pal(9, "Y1GnBu")) (100)
if (DB) {
DBs = c()
for (i in c(3:20)) {
mycl <- cutree(hc, k = i)
if (metric == "cor") {
DB = index.DB(t(scld_C), mycl, dist(1l - cor(as.matrix(scld_C))),
centrotypes = "centroids")
} else if (metric == "dist") {
DB = index.DB(t(scld_C), mycl, dist(as.matrix(t(scld_C)), method = "euclidean"),
centrotypes = "centroids")
}
DBs = c(DBs, DB$DB)
}
plot(c(3:20), DBs, type = "b", main = "Davies-Bouldin Index", xlab = "K")
}
for (grp in group) {
heatmap.2(as.matrix(scld_C), Colv = as.dendrogram(hc), ColSideColors = get(grp),
col = hmcol, dendrogram = "column", sepwidth = 0, trace = "none", labCol = "",
cexRow = 0.65)

¥
return(mycl)

}

cluster_info = cluster_map(as.matrix(scld_C[setdiff (rownames(scld_C), batch_modulesi8),
1), group = c("geno", "cluster"), genos = c("oep"), metric = "cor", den_cut = 10,
DB = T)

Davies-Bouldin Index

\

| |
| .
il \» | |
I

|
1 "
i T T

|
|
I

aaaaaaaaaaaaaa

cccccccccc

ooooo

aaaaaaa

VVVVVV

llllllllll

aaaaaaaaaa

Color Key I

o i !‘ fm}!‘ fr'EHr' r't ﬁ, 10
T
ot =
(W ||| | u'
) I| e

Dorsal Animal

| IIHHIIII\IV |]

LT
I IIIIXIIIIIM MR e

Repeat cluster without cells expressing high levels of YSL module

YSL is intensinally removed in our sample collecting procedure. The YSL module detected is likely resulted
from incomplete yolk removal or contamination from YSL.

hist(as.numeric(scld_C["YSL", 1), breaks = 50, main = "", xlab = "YSL module expression in cell")

Frequency
400 600 800
| L |

200
|

[T

[I I I 1
0.0 0.5 1.0 1.5 2.0

YSL module expression in cell

length(which(scld_C['YSL',]1>1)) #=9
C_noYSL = scld_C[, colnames(scld_C) [which(scld_C["YSL",] < 0.7)]1]

10

Again, we use Davies-Bouldin index to determin the optimal number of clusters, and show clustering result
as heatmaps, with color bars on top indicating genotype (dark blue = wt; light blue = MZoep) or cluster
membership.
cluster_info = cluster_map(as.matrix(C_noYSL[setdiff (rownames(C_noYSL), c("YSL",

batch_modules18)), 1), group = c("geno", "cluster"), genos = c("oep"), metric = "cor",

den_cut = 9, DB = T)

Davies-Bouldin Index

1.9

DBs
1.7
| |
o)
\
o}
AN
o/
/
\
\
o}
|
e}
\
/
e}
|
o}
\
e}
|
o
[
o

1.5
l
o

1.3

11

aaaaaaaaaaaaaa

L -
pl o m
| ||1|||||m ooooo

aaaaaaa

VVVVVV

IIIIII!}IIUHII | N
il

llllllllll

It lI"II“lv MWIH I\ ‘H “IIIIIII ''''''''''

aaaaaaaaaaaaaa

‘ |I “ Apoptotic: like
‘ ‘ || ’I |I‘| | ‘ ‘ porsa

aaaaaaaa

IIIIIII}IIIHIII
i ﬂl

llllllllll

- Mkim "' =

	URD-1-CreatingURDObject
	Load filtered data
	Create an URD object
	Find variable genes
	Perform PCA and calculate a tSNE projection
	Remove outliers
	Identify cells that are poorly connected
	Identify apoptotic-like cells
	Subset object to eliminate outliers

	Save object

	URD-2-CalculatingAndInspectingDiffusionMap
	Load previous saved object
	Calculate diffusion map
	Run on the cluster
	Load diffusion map and add to URD object
	Inspect diffusion map

	Pseudotime
	Calculate pseudotime floods
	Process pseudotime floods
	Inspect pseudotime

	Save object

	URD-3-ClusteringAndDeterminingTips
	Load previous saved object
	Trim to cells from final stage
	Perform PCA / tSNE on final stage cells
	Batch correct data
	Cluster cells from final stage
	Do graph-based clustering
	Plot individual clusterings

	Markers of each cluster
	Assign clusters
	Endoderm
	Axial mesoderm
	Intermediate/lateral mesoderm
	Paraxial mesoderm
	Neural
	Non-neural ectoderm
	Non-blastoderm
	Generate final clusterings

	Transfer clusterings to main object
	Save objects
	Plot tips in diffusion map

	URD-4-BiasedRandomWalks
	Load previous saved object
	Biased Random Walks
	Define parameters of logistic function to bias transition probabilities
	Run walks on cluster
	Process walks from cluster

	Save objects

	URD-5-BuildTree
	Load previous saved object
	Refine the walks before building the tree
	Build the tree
	Name the tips
	Automated first pass
	Manual refinement

	Check out gene expression in dendrogram
	Generate a force-directed layout
	Choose cells that were visited more robustly
	Calculate layout
	Load saved layout
	Hand-tune the tree

	Check out gene expression in the force-directed layout
	Save objects

	URD-6-GeneExpressionCascades
	Load previous saved object
	Differential expression with precision-recall along URD dendrogram
	Precision-recall tests along tree
	Precision-recall tests by stage for PGCs and EVL

	Differential expression should not be biased by library complexity
	NMF module comparison along tree
	Load the NMF data

	Combine the two sets of markers
	Impulse fits
	Heatmaps

	URD-7-Plotting
	Load previous saved object
	Color Palettes
	plotDim
	tSNE - Stage
	tSNE - Clustering
	tSNE - Gene Expression
	Diffusion Map

	Tree Dendrogram
	Force-directed Layout
	Gene Expression
	Markers of a specific lineage
	Preference plot at a branchpoint
	Define the preference layout for the branchpoint
	Plot stage on the preference plot
	Plot gene expression on the branchpoint.

	ComparingDiffusionMaps
	Load previous saved object
	Calculate diffusion maps
	Inspect diffusion maps
	Pseudotime
	Pseudotime by stage
	Compare determined pseudotimes

	URD-BiasedRandomWalksComparison-LongerSleepINFunction
	Load previous saved object
	Modifying Random Walk Bias
	Diffusion logistic settings
	Comparing visitation frequencies
	Segment assignment
	Prechordal Plate Walks
	Notochord Walks

	Compare Resultant Tree Structures
	Compare changes in trajectory membership across entire tree
	Compare changes in trajectory membership for each trajectory

	Modifying diffuson map parameters
	Compare Resultant Tree Structures
	Compare changes in trajectory membership across entire tree
	Compare changes in trajectory membership for each trajectory

	SM_analysis_module_tree
	Load the NMF results for each of the 12 stages
	Find and remove modules that are primarily driven by batch and noise from each stage
	Print out the size of matrix G at each stage (we will use these matrices to build the tree of connected modules)

	Calculate the weighted overlap between pairs of gene modules in adjacent stages
	Filter out modules that have poor connection to modules in both adjacent stages

	Calculate overlap between modules in every other stage
	Connect modules using the overlap scores calculated above
	Build tables that record potential connections
	Build an adjacency matrix to record the final connections between modules
	Visualize the connections using igraph

	Trim path with poor quality
	Calculate the average overlap score along each chain of connected gene modules
	Keep only the paths with >0.45 average weighted overlap.

	Save this adjacency matrix for more customed visualization in yed
	Save connected module information for overlaying on URD tree
	For each module at the end (oldest developmental stage) of a connected chain, find all its upstream modules, and store them as an entry in one list
	For modules that are in the same connected chain, sum up their levels in each cell to represent the expression of that lineage program. This results is a lineage by cell matrix
	Re-name some of the rownames in the lineage by cell matrix based on their expression in URD lineage
	Save this lineage by cell table. Also save a table with all modules and their levels in each cell
	for each 50% module, get its down stream connected modules and save their expression in all cells in a matrix
	save tables
	save the top 25 genes for each module
	find and save member genes for each module using a mixture model

	SM_SS2_cluster_analysis
	Read in the NMF result object
	Find gene modules that are good predictors for experimental batches
	First look at the PCA plot for all transcriptomes with all gene modules (using matrix C)
	Then separate transcriptomes from the two genotypes (wild-type and MZoep) and find batch modules for each genotype
	Generate PCA plot for all cells with all the non-batch gene modules

	Remove batch effects from the original expression matrix
	read in the expression matrix used for running NMF
	Removed batch effect
	Compare datasets before and after batch correction
	Save the dataset with batch effect removed for spatial mapping with Seurat

	Clustering analysis of cells based on non-batch gene modules
	First, Scale matrix C and assign names to modules
	Apply hierarchical clustering
	Repeat cluster without cells expressing high levels of YSL module

